"""Module implements an agent that uses OpenAI's APIs function enabled API."""
import json
from json import JSONDecodeError
from typing import Any, List, Optional, Sequence, Tuple, Union
from langchain_core._api import deprecated
from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish
from langchain_core.callbacks import BaseCallbackManager, Callbacks
from langchain_core.exceptions import OutputParserException
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import (
AIMessage,
BaseMessage,
SystemMessage,
)
from langchain_core.prompts import BasePromptTemplate
from langchain_core.prompts.chat import (
BaseMessagePromptTemplate,
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
)
from langchain_core.pydantic_v1 import root_validator
from langchain_core.tools import BaseTool
from langchain.agents import BaseMultiActionAgent
from langchain.agents.format_scratchpad.openai_functions import (
format_to_openai_function_messages,
)
# For backwards compatibility
_FunctionsAgentAction = AgentActionMessageLog
def _parse_ai_message(message: BaseMessage) -> Union[List[AgentAction], AgentFinish]:
"""Parse an AI message."""
if not isinstance(message, AIMessage):
raise TypeError(f"Expected an AI message got {type(message)}")
function_call = message.additional_kwargs.get("function_call", {})
if function_call:
try:
arguments = json.loads(function_call["arguments"], strict=False)
except JSONDecodeError:
raise OutputParserException(
f"Could not parse tool input: {function_call} because "
f"the `arguments` is not valid JSON."
)
try:
tools = arguments["actions"]
except (TypeError, KeyError):
raise OutputParserException(
f"Could not parse tool input: {function_call} because "
f"the `arguments` JSON does not contain `actions` key."
)
final_tools: List[AgentAction] = []
for tool_schema in tools:
if "action" in tool_schema:
_tool_input = tool_schema["action"]
else:
# drop action_name from schema
_tool_input = tool_schema.copy()
del _tool_input["action_name"]
function_name = tool_schema["action_name"]
# HACK HACK HACK:
# The code that encodes tool input into Open AI uses a special variable
# name called `__arg1` to handle old style tools that do not expose a
# schema and expect a single string argument as an input.
# We unpack the argument here if it exists.
# Open AI does not support passing in a JSON array as an argument.
if "__arg1" in _tool_input:
tool_input = _tool_input["__arg1"]
else:
tool_input = _tool_input
content_msg = f"responded: {message.content}\n" if message.content else "\n"
log = f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n"
_tool = _FunctionsAgentAction(
tool=function_name,
tool_input=tool_input,
log=log,
message_log=[message],
)
final_tools.append(_tool)
return final_tools
return AgentFinish(
return_values={"output": message.content}, log=str(message.content)
)
[docs]@deprecated("0.1.0", alternative="create_openai_tools_agent", removal="1.0")
class OpenAIMultiFunctionsAgent(BaseMultiActionAgent):
"""Agent driven by OpenAIs function powered API.
Args:
llm: This should be an instance of ChatOpenAI, specifically a model
that supports using `functions`.
tools: The tools this agent has access to.
prompt: The prompt for this agent, should support agent_scratchpad as one
of the variables. For an easy way to construct this prompt, use
`OpenAIMultiFunctionsAgent.create_prompt(...)`
"""
llm: BaseLanguageModel
tools: Sequence[BaseTool]
prompt: BasePromptTemplate
@root_validator(pre=False, skip_on_failure=True)
def validate_prompt(cls, values: dict) -> dict:
prompt: BasePromptTemplate = values["prompt"]
if "agent_scratchpad" not in prompt.input_variables:
raise ValueError(
"`agent_scratchpad` should be one of the variables in the prompt, "
f"got {prompt.input_variables}"
)
return values
@property
def input_keys(self) -> List[str]:
"""Get input keys. Input refers to user input here."""
return ["input"]
@property
def functions(self) -> List[dict]:
"""Get the functions for the agent."""
enum_vals = [t.name for t in self.tools]
tool_selection = {
# OpenAI functions returns a single tool invocation
# Here we force the single tool invocation it returns to
# itself be a list of tool invocations. We do this by constructing
# a new tool that has one argument which is a list of tools
# to use.
"name": "tool_selection",
"description": "A list of actions to take.",
"parameters": {
"title": "tool_selection",
"description": "A list of actions to take.",
"type": "object",
"properties": {
"actions": {
"title": "actions",
"type": "array",
"items": {
# This is a custom item which bundles the action_name
# and the action. We do this because some actions
# could have the same schema, and without this there
# is no way to differentiate them.
"title": "tool_call",
"type": "object",
"properties": {
# This is the name of the action to take
"action_name": {
"title": "action_name",
"enum": enum_vals,
"type": "string",
"description": (
"Name of the action to take. The name "
"provided here should match up with the "
"parameters for the action below."
),
},
# This is the action to take.
"action": {
"title": "Action",
"anyOf": [
{
"title": t.name,
"type": "object",
"properties": t.args,
}
for t in self.tools
],
},
},
"required": ["action_name", "action"],
},
}
},
"required": ["actions"],
},
}
return [tool_selection]
[docs] def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations.
callbacks: Callbacks to use. Default is None.
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = format_to_openai_function_messages(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks
)
agent_decision = _parse_ai_message(predicted_message)
return agent_decision
[docs] async def aplan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[List[AgentAction], AgentFinish]:
"""Async given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations.
callbacks: Callbacks to use. Default is None.
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = format_to_openai_function_messages(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
predicted_message = await self.llm.apredict_messages(
messages, functions=self.functions, callbacks=callbacks
)
agent_decision = _parse_ai_message(predicted_message)
return agent_decision
[docs] @classmethod
def create_prompt(
cls,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
) -> BasePromptTemplate:
"""Create prompt for this agent.
Args:
system_message: Message to use as the system message that will be the
first in the prompt.
extra_prompt_messages: Prompt messages that will be placed between the
system message and the new human input. Default is None.
Returns:
A prompt template to pass into this agent.
"""
_prompts = extra_prompt_messages or []
messages: List[Union[BaseMessagePromptTemplate, BaseMessage]]
if system_message:
messages = [system_message]
else:
messages = []
messages.extend(
[
*_prompts,
HumanMessagePromptTemplate.from_template("{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
return ChatPromptTemplate(messages=messages) # type: ignore[arg-type, call-arg]