Source code for langchain.chains.llm_math.base

"""Chain that interprets a prompt and executes python code to do math."""

from __future__ import annotations

import math
import re
import warnings
from typing import Any, Dict, List, Optional

from langchain_core._api import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManagerForChainRun,
    CallbackManagerForChainRun,
)
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate
from langchain_core.pydantic_v1 import root_validator

from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_math.prompt import PROMPT


[docs]@deprecated( since="0.2.13", message=( "This class is deprecated and will be removed in langchain 1.0. " "See API reference for replacement: " "https://api.python.langchain.com/en/latest/chains/langchain.chains.llm_math.base.LLMMathChain.html" # noqa: E501 ), removal="1.0", ) class LLMMathChain(Chain): """Chain that interprets a prompt and executes python code to do math. Note: this class is deprecated. See below for a replacement implementation using LangGraph. The benefits of this implementation are: - Uses LLM tool calling features; - Support for both token-by-token and step-by-step streaming; - Support for checkpointing and memory of chat history; - Easier to modify or extend (e.g., with additional tools, structured responses, etc.) Install LangGraph with: .. code-block:: bash pip install -U langgraph .. code-block:: python import math from typing import Annotated, Sequence from langchain_core.messages import BaseMessage from langchain_core.runnables import RunnableConfig from langchain_core.tools import tool from langchain_openai import ChatOpenAI from langgraph.graph import END, StateGraph from langgraph.graph.message import add_messages from langgraph.prebuilt.tool_node import ToolNode import numexpr from typing_extensions import TypedDict @tool def calculator(expression: str) -> str: \"\"\"Calculate expression using Python's numexpr library. Expression should be a single line mathematical expression that solves the problem. Examples: "37593 * 67" for "37593 times 67" "37593**(1/5)" for "37593^(1/5)" \"\"\" local_dict = {"pi": math.pi, "e": math.e} return str( numexpr.evaluate( expression.strip(), global_dict={}, # restrict access to globals local_dict=local_dict, # add common mathematical functions ) ) llm = ChatOpenAI(model="gpt-4o-mini", temperature=0) tools = [calculator] llm_with_tools = llm.bind_tools(tools, tool_choice="any") class ChainState(TypedDict): \"\"\"LangGraph state.\"\"\" messages: Annotated[Sequence[BaseMessage], add_messages] async def acall_chain(state: ChainState, config: RunnableConfig): last_message = state["messages"][-1] response = await llm_with_tools.ainvoke(state["messages"], config) return {"messages": [response]} async def acall_model(state: ChainState, config: RunnableConfig): response = await llm.ainvoke(state["messages"], config) return {"messages": [response]} graph_builder = StateGraph(ChainState) graph_builder.add_node("call_tool", acall_chain) graph_builder.add_node("execute_tool", ToolNode(tools)) graph_builder.add_node("call_model", acall_model) graph_builder.set_entry_point("call_tool") graph_builder.add_edge("call_tool", "execute_tool") graph_builder.add_edge("execute_tool", "call_model") graph_builder.add_edge("call_model", END) chain = graph_builder.compile() .. code-block:: python example_query = "What is 551368 divided by 82" events = chain.astream( {"messages": [("user", example_query)]}, stream_mode="values", ) async for event in events: event["messages"][-1].pretty_print() .. code-block:: none ================================ Human Message ================================= What is 551368 divided by 82 ================================== Ai Message ================================== Tool Calls: calculator (call_MEiGXuJjJ7wGU4aOT86QuGJS) Call ID: call_MEiGXuJjJ7wGU4aOT86QuGJS Args: expression: 551368 / 82 ================================= Tool Message ================================= Name: calculator 6724.0 ================================== Ai Message ================================== 551368 divided by 82 equals 6724. Example: .. code-block:: python from langchain.chains import LLMMathChain from langchain_community.llms import OpenAI llm_math = LLMMathChain.from_llm(OpenAI()) """ # noqa: E501 llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" prompt: BasePromptTemplate = PROMPT """[Deprecated] Prompt to use to translate to python if necessary.""" input_key: str = "question" #: :meta private: output_key: str = "answer" #: :meta private: class Config: arbitrary_types_allowed = True extra = "forbid" @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: try: import numexpr # noqa: F401 except ImportError: raise ImportError( "LLMMathChain requires the numexpr package. " "Please install it with `pip install numexpr`." ) if "llm" in values: warnings.warn( "Directly instantiating an LLMMathChain with an llm is deprecated. " "Please instantiate with llm_chain argument or using the from_llm " "class method." ) if "llm_chain" not in values and values["llm"] is not None: prompt = values.get("prompt", PROMPT) values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) return values @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ return [self.output_key] def _evaluate_expression(self, expression: str) -> str: import numexpr try: local_dict = {"pi": math.pi, "e": math.e} output = str( numexpr.evaluate( expression.strip(), global_dict={}, # restrict access to globals local_dict=local_dict, # add common mathematical functions ) ) except Exception as e: raise ValueError( f'LLMMathChain._evaluate("{expression}") raised error: {e}.' " Please try again with a valid numerical expression" ) # Remove any leading and trailing brackets from the output return re.sub(r"^\[|\]$", "", output) def _process_llm_result( self, llm_output: str, run_manager: CallbackManagerForChainRun ) -> Dict[str, str]: run_manager.on_text(llm_output, color="green", verbose=self.verbose) llm_output = llm_output.strip() text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) if text_match: expression = text_match.group(1) output = self._evaluate_expression(expression) run_manager.on_text("\nAnswer: ", verbose=self.verbose) run_manager.on_text(output, color="yellow", verbose=self.verbose) answer = "Answer: " + output elif llm_output.startswith("Answer:"): answer = llm_output elif "Answer:" in llm_output: answer = "Answer: " + llm_output.split("Answer:")[-1] else: raise ValueError(f"unknown format from LLM: {llm_output}") return {self.output_key: answer} async def _aprocess_llm_result( self, llm_output: str, run_manager: AsyncCallbackManagerForChainRun, ) -> Dict[str, str]: await run_manager.on_text(llm_output, color="green", verbose=self.verbose) llm_output = llm_output.strip() text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) if text_match: expression = text_match.group(1) output = self._evaluate_expression(expression) await run_manager.on_text("\nAnswer: ", verbose=self.verbose) await run_manager.on_text(output, color="yellow", verbose=self.verbose) answer = "Answer: " + output elif llm_output.startswith("Answer:"): answer = llm_output elif "Answer:" in llm_output: answer = "Answer: " + llm_output.split("Answer:")[-1] else: raise ValueError(f"unknown format from LLM: {llm_output}") return {self.output_key: answer} def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() _run_manager.on_text(inputs[self.input_key]) llm_output = self.llm_chain.predict( question=inputs[self.input_key], stop=["```output"], callbacks=_run_manager.get_child(), ) return self._process_llm_result(llm_output, _run_manager) async def _acall( self, inputs: Dict[str, str], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() await _run_manager.on_text(inputs[self.input_key]) llm_output = await self.llm_chain.apredict( question=inputs[self.input_key], stop=["```output"], callbacks=_run_manager.get_child(), ) return await self._aprocess_llm_result(llm_output, _run_manager) @property def _chain_type(self) -> str: return "llm_math_chain"
[docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: BasePromptTemplate = PROMPT, **kwargs: Any, ) -> LLMMathChain: llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(llm_chain=llm_chain, **kwargs)