[docs]classAnswerWithSources(BaseModel):"""An answer to the question, with sources."""answer:str=Field(...,description="Answer to the question that was asked")sources:List[str]=Field(...,description="List of sources used to answer the question")
[docs]@deprecated(since="0.2.13",removal="1.0",message=("This function is deprecated. Refer to this guide on retrieval and question ""answering with structured responses: ""https://python.langchain.com/v0.2/docs/how_to/qa_sources/#structure-sources-in-model-response"# noqa: E501),)defcreate_qa_with_structure_chain(llm:BaseLanguageModel,schema:Union[dict,Type[BaseModel]],output_parser:str="base",prompt:Optional[Union[PromptTemplate,ChatPromptTemplate]]=None,verbose:bool=False,)->LLMChain:"""Create a question answering chain that returns an answer with sources based on schema. Args: llm: Language model to use for the chain. schema: Pydantic schema to use for the output. output_parser: Output parser to use. Should be one of `pydantic` or `base`. Default to `base`. prompt: Optional prompt to use for the chain. Returns: """ifoutput_parser=="pydantic":ifnot(isinstance(schema,type)andis_basemodel_subclass(schema)):raiseValueError("Must provide a pydantic class for schema when output_parser is ""'pydantic'.")_output_parser:BaseLLMOutputParser=PydanticOutputFunctionsParser(pydantic_schema=schema)elifoutput_parser=="base":_output_parser=OutputFunctionsParser()else:raiseValueError(f"Got unexpected output_parser: {output_parser}. "f"Should be one of `pydantic` or `base`.")ifisinstance(schema,type)andis_basemodel_subclass(schema):schema_dict=cast(dict,schema.schema())else:schema_dict=cast(dict,schema)function={"name":schema_dict["title"],"description":schema_dict["description"],"parameters":schema_dict,}llm_kwargs=get_llm_kwargs(function)messages=[SystemMessage(content=("You are a world class algorithm to answer ""questions in a specific format.")),HumanMessage(content="Answer question using the following context"),HumanMessagePromptTemplate.from_template("{context}"),HumanMessagePromptTemplate.from_template("Question: {question}"),HumanMessage(content="Tips: Make sure to answer in the correct format"),]prompt=promptorChatPromptTemplate(messages=messages)# type: ignore[arg-type, call-arg]chain=LLMChain(llm=llm,prompt=prompt,llm_kwargs=llm_kwargs,output_parser=_output_parser,verbose=verbose,)returnchain
[docs]@deprecated(since="0.2.13",removal="1.0",message=("This function is deprecated. Refer to this guide on retrieval and question ""answering with sources: ""https://python.langchain.com/v0.2/docs/how_to/qa_sources/#structure-sources-in-model-response"# noqa: E501),)defcreate_qa_with_sources_chain(llm:BaseLanguageModel,verbose:bool=False,**kwargs:Any)->LLMChain:"""Create a question answering chain that returns an answer with sources. Args: llm: Language model to use for the chain. verbose: Whether to print the details of the chain **kwargs: Keyword arguments to pass to `create_qa_with_structure_chain`. Returns: Chain (LLMChain) that can be used to answer questions with citations. """returncreate_qa_with_structure_chain(llm,AnswerWithSources,verbose=verbose,**kwargs)