from typing import Any, Dict, List, Optional, Type
from langchain_core.document_loaders import BaseLoader
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.language_models import BaseLanguageModel
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.vectorstores import VectorStore
from langchain_text_splitters import RecursiveCharacterTextSplitter, TextSplitter
from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain
from langchain.chains.retrieval_qa.base import RetrievalQA
def _get_default_text_splitter() -> TextSplitter:
return RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
[docs]class VectorStoreIndexWrapper(BaseModel):
"""Wrapper around a vectorstore for easy access."""
vectorstore: VectorStore
class Config:
arbitrary_types_allowed = True
extra = "forbid"
[docs] def query(
self,
question: str,
llm: Optional[BaseLanguageModel] = None,
retriever_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> str:
"""Query the vectorstore."""
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQA.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
)
return chain.invoke({chain.input_key: question})[chain.output_key]
[docs] async def aquery(
self,
question: str,
llm: Optional[BaseLanguageModel] = None,
retriever_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> str:
"""Query the vectorstore."""
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQA.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
)
return (await chain.ainvoke({chain.input_key: question}))[chain.output_key]
[docs] def query_with_sources(
self,
question: str,
llm: Optional[BaseLanguageModel] = None,
retriever_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> dict:
"""Query the vectorstore and get back sources."""
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQAWithSourcesChain.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
)
return chain.invoke({chain.question_key: question})
[docs] async def aquery_with_sources(
self,
question: str,
llm: Optional[BaseLanguageModel] = None,
retriever_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> dict:
"""Query the vectorstore and get back sources."""
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQAWithSourcesChain.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
)
return await chain.ainvoke({chain.question_key: question})
def _get_in_memory_vectorstore() -> Type[VectorStore]:
"""Get the InMemoryVectorStore."""
import warnings
try:
from langchain_community.vectorstores.inmemory import InMemoryVectorStore
except ImportError:
raise ImportError(
"Please install langchain-community to use the InMemoryVectorStore."
)
warnings.warn(
"Using InMemoryVectorStore as the default vectorstore."
"This memory store won't persist data. You should explicitly"
"specify a vectorstore when using VectorstoreIndexCreator"
)
return InMemoryVectorStore
[docs]class VectorstoreIndexCreator(BaseModel):
"""Logic for creating indexes."""
vectorstore_cls: Type[VectorStore] = Field(
default_factory=_get_in_memory_vectorstore
)
embedding: Embeddings
text_splitter: TextSplitter = Field(default_factory=_get_default_text_splitter)
vectorstore_kwargs: dict = Field(default_factory=dict)
class Config:
arbitrary_types_allowed = True
extra = "forbid"
[docs] def from_loaders(self, loaders: List[BaseLoader]) -> VectorStoreIndexWrapper:
"""Create a vectorstore index from loaders."""
docs = []
for loader in loaders:
docs.extend(loader.load())
return self.from_documents(docs)
[docs] async def afrom_loaders(self, loaders: List[BaseLoader]) -> VectorStoreIndexWrapper:
"""Create a vectorstore index from loaders."""
docs = []
for loader in loaders:
async for doc in loader.alazy_load():
docs.append(doc)
return await self.afrom_documents(docs)
[docs] def from_documents(self, documents: List[Document]) -> VectorStoreIndexWrapper:
"""Create a vectorstore index from documents."""
sub_docs = self.text_splitter.split_documents(documents)
vectorstore = self.vectorstore_cls.from_documents(
sub_docs, self.embedding, **self.vectorstore_kwargs
)
return VectorStoreIndexWrapper(vectorstore=vectorstore)
[docs] async def afrom_documents(
self, documents: List[Document]
) -> VectorStoreIndexWrapper:
"""Create a vectorstore index from documents."""
sub_docs = self.text_splitter.split_documents(documents)
vectorstore = await self.vectorstore_cls.afrom_documents(
sub_docs, self.embedding, **self.vectorstore_kwargs
)
return VectorStoreIndexWrapper(vectorstore=vectorstore)