Source code for langchain.memory.summary_buffer
from typing import Any, Dict, List, Union
from langchain_core.messages import BaseMessage, get_buffer_string
from langchain_core.utils import pre_init
from langchain.memory.chat_memory import BaseChatMemory
from langchain.memory.summary import SummarizerMixin
[docs]class ConversationSummaryBufferMemory(BaseChatMemory, SummarizerMixin):
"""Buffer with summarizer for storing conversation memory."""
max_token_limit: int = 2000
moving_summary_buffer: str = ""
memory_key: str = "history"
@property
def buffer(self) -> Union[str, List[BaseMessage]]:
"""String buffer of memory."""
return self.load_memory_variables({})[self.memory_key]
[docs] async def abuffer(self) -> Union[str, List[BaseMessage]]:
"""Async memory buffer."""
memory_variables = await self.aload_memory_variables({})
return memory_variables[self.memory_key]
@property
def memory_variables(self) -> List[str]:
"""Will always return list of memory variables.
:meta private:
"""
return [self.memory_key]
[docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Return history buffer."""
buffer = self.chat_memory.messages
if self.moving_summary_buffer != "":
first_messages: List[BaseMessage] = [
self.summary_message_cls(content=self.moving_summary_buffer)
]
buffer = first_messages + buffer
if self.return_messages:
final_buffer: Any = buffer
else:
final_buffer = get_buffer_string(
buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix
)
return {self.memory_key: final_buffer}
[docs] async def aload_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Asynchronously return key-value pairs given the text input to the chain."""
buffer = await self.chat_memory.aget_messages()
if self.moving_summary_buffer != "":
first_messages: List[BaseMessage] = [
self.summary_message_cls(content=self.moving_summary_buffer)
]
buffer = first_messages + buffer
if self.return_messages:
final_buffer: Any = buffer
else:
final_buffer = get_buffer_string(
buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix
)
return {self.memory_key: final_buffer}
@pre_init
def validate_prompt_input_variables(cls, values: Dict) -> Dict:
"""Validate that prompt input variables are consistent."""
prompt_variables = values["prompt"].input_variables
expected_keys = {"summary", "new_lines"}
if expected_keys != set(prompt_variables):
raise ValueError(
"Got unexpected prompt input variables. The prompt expects "
f"{prompt_variables}, but it should have {expected_keys}."
)
return values
[docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""Save context from this conversation to buffer."""
super().save_context(inputs, outputs)
self.prune()
[docs] async def asave_context(
self, inputs: Dict[str, Any], outputs: Dict[str, str]
) -> None:
"""Asynchronously save context from this conversation to buffer."""
await super().asave_context(inputs, outputs)
await self.aprune()
[docs] def prune(self) -> None:
"""Prune buffer if it exceeds max token limit"""
buffer = self.chat_memory.messages
curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer)
if curr_buffer_length > self.max_token_limit:
pruned_memory = []
while curr_buffer_length > self.max_token_limit:
pruned_memory.append(buffer.pop(0))
curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer)
self.moving_summary_buffer = self.predict_new_summary(
pruned_memory, self.moving_summary_buffer
)
[docs] async def aprune(self) -> None:
"""Asynchronously prune buffer if it exceeds max token limit"""
buffer = self.chat_memory.messages
curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer)
if curr_buffer_length > self.max_token_limit:
pruned_memory = []
while curr_buffer_length > self.max_token_limit:
pruned_memory.append(buffer.pop(0))
curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer)
self.moving_summary_buffer = await self.apredict_new_summary(
pruned_memory, self.moving_summary_buffer
)
[docs] def clear(self) -> None:
"""Clear memory contents."""
super().clear()
self.moving_summary_buffer = ""
[docs] async def aclear(self) -> None:
"""Asynchronously clear memory contents."""
await super().aclear()
self.moving_summary_buffer = ""