[docs]defcreate_sql_agent(llm:BaseLanguageModel,toolkit:Optional[SQLDatabaseToolkit]=None,agent_type:Optional[Union[AgentType,Literal["openai-tools","tool-calling"]]]=None,callback_manager:Optional[BaseCallbackManager]=None,prefix:Optional[str]=None,suffix:Optional[str]=None,format_instructions:Optional[str]=None,input_variables:Optional[List[str]]=None,top_k:int=10,max_iterations:Optional[int]=15,max_execution_time:Optional[float]=None,early_stopping_method:str="force",verbose:bool=False,agent_executor_kwargs:Optional[Dict[str,Any]]=None,extra_tools:Sequence[BaseTool]=(),*,db:Optional[SQLDatabase]=None,prompt:Optional[BasePromptTemplate]=None,**kwargs:Any,)->AgentExecutor:"""Construct a SQL agent from an LLM and toolkit or database. Args: llm: Language model to use for the agent. If agent_type is "tool-calling" then llm is expected to support tool calling. toolkit: SQLDatabaseToolkit for the agent to use. Must provide exactly one of 'toolkit' or 'db'. Specify 'toolkit' if you want to use a different model for the agent and the toolkit. agent_type: One of "tool-calling", "openai-tools", "openai-functions", or "zero-shot-react-description". Defaults to "zero-shot-react-description". "tool-calling" is recommended over the legacy "openai-tools" and "openai-functions" types. callback_manager: DEPRECATED. Pass "callbacks" key into 'agent_executor_kwargs' instead to pass constructor callbacks to AgentExecutor. prefix: Prompt prefix string. Must contain variables "top_k" and "dialect". suffix: Prompt suffix string. Default depends on agent type. format_instructions: Formatting instructions to pass to ZeroShotAgent.create_prompt() when 'agent_type' is "zero-shot-react-description". Otherwise ignored. input_variables: DEPRECATED. top_k: Number of rows to query for by default. max_iterations: Passed to AgentExecutor init. max_execution_time: Passed to AgentExecutor init. early_stopping_method: Passed to AgentExecutor init. verbose: AgentExecutor verbosity. agent_executor_kwargs: Arbitrary additional AgentExecutor args. extra_tools: Additional tools to give to agent on top of the ones that come with SQLDatabaseToolkit. db: SQLDatabase from which to create a SQLDatabaseToolkit. Toolkit is created using 'db' and 'llm'. Must provide exactly one of 'db' or 'toolkit'. prompt: Complete agent prompt. prompt and {prefix, suffix, format_instructions, input_variables} are mutually exclusive. **kwargs: Arbitrary additional Agent args. Returns: An AgentExecutor with the specified agent_type agent. Example: .. code-block:: python from langchain_openai import ChatOpenAI from langchain_community.agent_toolkits import create_sql_agent from langchain_community.utilities import SQLDatabase db = SQLDatabase.from_uri("sqlite:///Chinook.db") llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) agent_executor = create_sql_agent(llm, db=db, agent_type="tool-calling", verbose=True) """# noqa: E501fromlangchain.agentsimport(create_openai_functions_agent,create_openai_tools_agent,create_react_agent,create_tool_calling_agent,)fromlangchain.agents.agentimport(AgentExecutor,RunnableAgent,RunnableMultiActionAgent,)fromlangchain.agents.agent_typesimportAgentTypeiftoolkitisNoneanddbisNone:raiseValueError("Must provide exactly one of 'toolkit' or 'db'. Received neither.")iftoolkitanddb:raiseValueError("Must provide exactly one of 'toolkit' or 'db'. Received both.")toolkit=toolkitorSQLDatabaseToolkit(llm=llm,db=db)# type: ignore[arg-type]agent_type=agent_typeorAgentType.ZERO_SHOT_REACT_DESCRIPTIONtools=toolkit.get_tools()+list(extra_tools)ifprefixisNone:prefix=SQL_PREFIXifpromptisNone:prefix=prefix.format(dialect=toolkit.dialect,top_k=top_k)else:if"top_k"inprompt.input_variables:prompt=prompt.partial(top_k=str(top_k))if"dialect"inprompt.input_variables:prompt=prompt.partial(dialect=toolkit.dialect)ifany(keyinprompt.input_variablesforkeyin["table_info","table_names"]):db_context=toolkit.get_context()if"table_info"inprompt.input_variables:prompt=prompt.partial(table_info=db_context["table_info"])tools=[toolfortoolintoolsifnotisinstance(tool,InfoSQLDatabaseTool)]if"table_names"inprompt.input_variables:prompt=prompt.partial(table_names=db_context["table_names"])tools=[toolfortoolintoolsifnotisinstance(tool,ListSQLDatabaseTool)]ifagent_type==AgentType.ZERO_SHOT_REACT_DESCRIPTION:ifpromptisNone:fromlangchain.agents.mrklimportpromptasreact_promptformat_instructions=(format_instructionsorreact_prompt.FORMAT_INSTRUCTIONS)template="\n\n".join([prefix,"{tools}",format_instructions,suffixorSQL_SUFFIX,])prompt=PromptTemplate.from_template(template)agent=RunnableAgent(runnable=create_react_agent(llm,tools,prompt),input_keys_arg=["input"],return_keys_arg=["output"],**kwargs,)elifagent_type==AgentType.OPENAI_FUNCTIONS:ifpromptisNone:messages:List=[SystemMessage(content=cast(str,prefix)),HumanMessagePromptTemplate.from_template("{input}"),AIMessage(content=suffixorSQL_FUNCTIONS_SUFFIX),MessagesPlaceholder(variable_name="agent_scratchpad"),]prompt=ChatPromptTemplate.from_messages(messages)agent=RunnableAgent(runnable=create_openai_functions_agent(llm,tools,prompt),# type: ignoreinput_keys_arg=["input"],return_keys_arg=["output"],**kwargs,)elifagent_typein("openai-tools","tool-calling"):ifpromptisNone:messages=[SystemMessage(content=cast(str,prefix)),HumanMessagePromptTemplate.from_template("{input}"),AIMessage(content=suffixorSQL_FUNCTIONS_SUFFIX),MessagesPlaceholder(variable_name="agent_scratchpad"),]prompt=ChatPromptTemplate.from_messages(messages)ifagent_type=="openai-tools":runnable=create_openai_tools_agent(llm,tools,prompt)# type: ignoreelse:runnable=create_tool_calling_agent(llm,tools,prompt)# type: ignoreagent=RunnableMultiActionAgent(# type: ignore[assignment]runnable=runnable,input_keys_arg=["input"],return_keys_arg=["output"],**kwargs,)else:raiseValueError(f"Agent type {agent_type} not supported at the moment. Must be one of ""'tool-calling', 'openai-tools', 'openai-functions', or ""'zero-shot-react-description'.")returnAgentExecutor(name="SQL Agent Executor",agent=agent,tools=tools,callback_manager=callback_manager,verbose=verbose,max_iterations=max_iterations,max_execution_time=max_execution_time,early_stopping_method=early_stopping_method,**(agent_executor_kwargsor{}),)