Source code for langchain_community.chains.graph_qa.kuzu
"""Question answering over a graph."""from__future__importannotationsimportrefromtypingimportAny,Dict,List,Optionalfromlangchain.chains.baseimportChainfromlangchain.chains.llmimportLLMChainfromlangchain_core.callbacksimportCallbackManagerForChainRunfromlangchain_core.language_modelsimportBaseLanguageModelfromlangchain_core.promptsimportBasePromptTemplatefromlangchain_core.pydantic_v1importFieldfromlangchain_community.chains.graph_qa.promptsimport(CYPHER_QA_PROMPT,KUZU_GENERATION_PROMPT,)fromlangchain_community.graphs.kuzu_graphimportKuzuGraph
[docs]defremove_prefix(text:str,prefix:str)->str:"""Remove a prefix from a text. Args: text: Text to remove the prefix from. prefix: Prefix to remove from the text. Returns: Text with the prefix removed. """iftext.startswith(prefix):returntext[len(prefix):]returntext
[docs]defextract_cypher(text:str)->str:"""Extract Cypher code from a text. Args: text: Text to extract Cypher code from. Returns: Cypher code extracted from the text. """# The pattern to find Cypher code enclosed in triple backtickspattern=r"```(.*?)```"# Find all matches in the input textmatches=re.findall(pattern,text,re.DOTALL)returnmatches[0]ifmatcheselsetext
[docs]classKuzuQAChain(Chain):"""Question-answering against a graph by generating Cypher statements for KΓΉzu. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """graph:KuzuGraph=Field(exclude=True)cypher_generation_chain:LLMChainqa_chain:LLMChaininput_key:str="query"#: :meta private:output_key:str="result"#: :meta private:@propertydefinput_keys(self)->List[str]:"""Return the input keys. :meta private: """return[self.input_key]@propertydefoutput_keys(self)->List[str]:"""Return the output keys. :meta private: """_output_keys=[self.output_key]return_output_keys
[docs]@classmethoddeffrom_llm(cls,llm:Optional[BaseLanguageModel]=None,*,qa_prompt:BasePromptTemplate=CYPHER_QA_PROMPT,cypher_prompt:BasePromptTemplate=KUZU_GENERATION_PROMPT,cypher_llm:Optional[BaseLanguageModel]=None,qa_llm:Optional[BaseLanguageModel]=None,**kwargs:Any,)->KuzuQAChain:"""Initialize from LLM."""ifnotcypher_llmandnotllm:raiseValueError("Either `llm` or `cypher_llm` parameters must be provided")ifnotqa_llmandnotllm:raiseValueError("Either `llm` or `qa_llm` parameters must be provided along with"" `cypher_llm`")ifcypher_llmandqa_llmandllm:raiseValueError("You can specify up to two of 'cypher_llm', 'qa_llm'"", and 'llm', but not all three simultaneously.")qa_chain=LLMChain(llm=qa_llmorllm,# type: ignore[arg-type]prompt=qa_prompt,)cypher_generation_chain=LLMChain(llm=cypher_llmorllm,# type: ignore[arg-type]prompt=cypher_prompt,)returncls(qa_chain=qa_chain,cypher_generation_chain=cypher_generation_chain,**kwargs,)
def_call(self,inputs:Dict[str,Any],run_manager:Optional[CallbackManagerForChainRun]=None,)->Dict[str,str]:"""Generate Cypher statement, use it to look up in db and answer question."""_run_manager=run_managerorCallbackManagerForChainRun.get_noop_manager()callbacks=_run_manager.get_child()question=inputs[self.input_key]generated_cypher=self.cypher_generation_chain.run({"question":question,"schema":self.graph.get_schema},callbacks=callbacks)# Extract Cypher code if it is wrapped in triple backticks# with the language marker "cypher"generated_cypher=remove_prefix(extract_cypher(generated_cypher),"cypher")_run_manager.on_text("Generated Cypher:",end="\n",verbose=self.verbose)_run_manager.on_text(generated_cypher,color="green",end="\n",verbose=self.verbose)context=self.graph.query(generated_cypher)_run_manager.on_text("Full Context:",end="\n",verbose=self.verbose)_run_manager.on_text(str(context),color="green",end="\n",verbose=self.verbose)result=self.qa_chain({"question":question,"context":context},callbacks=callbacks,)return{self.output_key:result[self.qa_chain.output_key]}