Source code for langchain_community.chains.graph_qa.nebulagraph
"""Question answering over a graph."""from__future__importannotationsfromtypingimportAny,Dict,List,Optionalfromlangchain.chains.baseimportChainfromlangchain.chains.llmimportLLMChainfromlangchain_core.callbacksimportCallbackManagerForChainRunfromlangchain_core.language_modelsimportBaseLanguageModelfromlangchain_core.promptsimportBasePromptTemplatefromlangchain_core.pydantic_v1importFieldfromlangchain_community.chains.graph_qa.promptsimport(CYPHER_QA_PROMPT,NGQL_GENERATION_PROMPT,)fromlangchain_community.graphs.nebula_graphimportNebulaGraph
[docs]classNebulaGraphQAChain(Chain):"""Chain for question-answering against a graph by generating nGQL statements. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """graph:NebulaGraph=Field(exclude=True)ngql_generation_chain:LLMChainqa_chain:LLMChaininput_key:str="query"#: :meta private:output_key:str="result"#: :meta private:@propertydefinput_keys(self)->List[str]:"""Return the input keys. :meta private: """return[self.input_key]@propertydefoutput_keys(self)->List[str]:"""Return the output keys. :meta private: """_output_keys=[self.output_key]return_output_keys
[docs]@classmethoddeffrom_llm(cls,llm:BaseLanguageModel,*,qa_prompt:BasePromptTemplate=CYPHER_QA_PROMPT,ngql_prompt:BasePromptTemplate=NGQL_GENERATION_PROMPT,**kwargs:Any,)->NebulaGraphQAChain:"""Initialize from LLM."""qa_chain=LLMChain(llm=llm,prompt=qa_prompt)ngql_generation_chain=LLMChain(llm=llm,prompt=ngql_prompt)returncls(qa_chain=qa_chain,ngql_generation_chain=ngql_generation_chain,**kwargs,)
def_call(self,inputs:Dict[str,Any],run_manager:Optional[CallbackManagerForChainRun]=None,)->Dict[str,str]:"""Generate nGQL statement, use it to look up in db and answer question."""_run_manager=run_managerorCallbackManagerForChainRun.get_noop_manager()callbacks=_run_manager.get_child()question=inputs[self.input_key]generated_ngql=self.ngql_generation_chain.run({"question":question,"schema":self.graph.get_schema},callbacks=callbacks)_run_manager.on_text("Generated nGQL:",end="\n",verbose=self.verbose)_run_manager.on_text(generated_ngql,color="green",end="\n",verbose=self.verbose)context=self.graph.query(generated_ngql)_run_manager.on_text("Full Context:",end="\n",verbose=self.verbose)_run_manager.on_text(str(context),color="green",end="\n",verbose=self.verbose)result=self.qa_chain({"question":question,"context":context},callbacks=callbacks,)return{self.output_key:result[self.qa_chain.output_key]}