[docs]classLlamaContentFormatter(ContentFormatterBase):"""Content formatter for `LLaMA`."""
[docs]def__init__(self)->None:raiseTypeError("`LlamaContentFormatter` is deprecated for chat models. Use ""`CustomOpenAIContentFormatter` instead.")
[docs]classCustomOpenAIChatContentFormatter(ContentFormatterBase):"""Chat Content formatter for models with OpenAI like API scheme."""SUPPORTED_ROLES:List[str]=["user","assistant","system"]@staticmethoddef_convert_message_to_dict(message:BaseMessage)->Dict:"""Converts a message to a dict according to a role"""content=cast(str,message.content)ifisinstance(message,HumanMessage):return{"role":"user","content":ContentFormatterBase.escape_special_characters(content),}elifisinstance(message,AIMessage):return{"role":"assistant","content":ContentFormatterBase.escape_special_characters(content),}elifisinstance(message,SystemMessage):return{"role":"system","content":ContentFormatterBase.escape_special_characters(content),}elif(isinstance(message,ChatMessage)andmessage.roleinCustomOpenAIChatContentFormatter.SUPPORTED_ROLES):return{"role":message.role,"content":ContentFormatterBase.escape_special_characters(content),}else:supported=",".join([roleforroleinCustomOpenAIChatContentFormatter.SUPPORTED_ROLES])raiseValueError(f"""Received unsupported role. Supported roles for the LLaMa Foundation Model: {supported}""")@propertydefsupported_api_types(self)->List[AzureMLEndpointApiType]:return[AzureMLEndpointApiType.dedicated,AzureMLEndpointApiType.serverless]
[docs]defformat_messages_request_payload(self,messages:List[BaseMessage],model_kwargs:Dict,api_type:AzureMLEndpointApiType,)->bytes:"""Formats the request according to the chosen api"""chat_messages=[CustomOpenAIChatContentFormatter._convert_message_to_dict(message)formessageinmessages]ifapi_typein[AzureMLEndpointApiType.dedicated,AzureMLEndpointApiType.realtime,]:request_payload=json.dumps({"input_data":{"input_string":chat_messages,"parameters":model_kwargs,}})elifapi_type==AzureMLEndpointApiType.serverless:request_payload=json.dumps({"messages":chat_messages,**model_kwargs})else:raiseValueError(f"`api_type` {api_type} is not supported by this formatter")returnstr.encode(request_payload)
[docs]defformat_response_payload(self,output:bytes,api_type:AzureMLEndpointApiType=AzureMLEndpointApiType.dedicated,)->ChatGeneration:"""Formats response"""ifapi_typein[AzureMLEndpointApiType.dedicated,AzureMLEndpointApiType.realtime,]:try:choice=json.loads(output)["output"]except(KeyError,IndexError,TypeError)ase:raiseValueError(self.format_error_msg.format(api_type=api_type))fromereturnChatGeneration(message=AIMessage(content=choice.strip(),),generation_info=None,)ifapi_type==AzureMLEndpointApiType.serverless:try:choice=json.loads(output)["choices"][0]ifnotisinstance(choice,dict):raiseTypeError("Endpoint response is not well formed for a chat ""model. Expected `dict` but `{type(choice)}` was received.")except(KeyError,IndexError,TypeError)ase:raiseValueError(self.format_error_msg.format(api_type=api_type))fromereturnChatGeneration(message=AIMessage(content=choice["message"]["content"].strip())ifchoice["message"]["role"]=="assistant"elseBaseMessage(content=choice["message"]["content"].strip(),type=choice["message"]["role"],),generation_info=dict(finish_reason=choice.get("finish_reason"),logprobs=choice.get("logprobs"),),)raiseValueError(f"`api_type` {api_type} is not supported by this formatter")
[docs]classLlamaChatContentFormatter(CustomOpenAIChatContentFormatter):"""Deprecated: Kept for backwards compatibility Chat Content formatter for Llama."""
[docs]def__init__(self)->None:super().__init__()warnings.warn("""`LlamaChatContentFormatter` will be deprecated in the future. Please use `CustomOpenAIChatContentFormatter` instead. """)
[docs]classMistralChatContentFormatter(LlamaChatContentFormatter):"""Content formatter for `Mistral`."""
[docs]defformat_messages_request_payload(self,messages:List[BaseMessage],model_kwargs:Dict,api_type:AzureMLEndpointApiType,)->bytes:"""Formats the request according to the chosen api"""chat_messages=[self._convert_message_to_dict(message)formessageinmessages]ifchat_messagesandchat_messages[0]["role"]=="system":# Mistral OSS models do not explicitly support system prompts, so we have to# stash in the first user promptchat_messages[1]["content"]=(chat_messages[0]["content"]+"\n\n"+chat_messages[1]["content"])delchat_messages[0]ifapi_type==AzureMLEndpointApiType.realtime:request_payload=json.dumps({"input_data":{"input_string":chat_messages,"parameters":model_kwargs,}})elifapi_type==AzureMLEndpointApiType.serverless:request_payload=json.dumps({"messages":chat_messages,**model_kwargs})else:raiseValueError(f"`api_type` {api_type} is not supported by this formatter")returnstr.encode(request_payload)
[docs]classAzureMLChatOnlineEndpoint(BaseChatModel,AzureMLBaseEndpoint):"""Azure ML Online Endpoint chat models. Example: .. code-block:: python azure_llm = AzureMLOnlineEndpoint( endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions", endpoint_api_type=AzureMLApiType.serverless, endpoint_api_key="my-api-key", content_formatter=chat_content_formatter, ) """@propertydef_identifying_params(self)->Dict[str,Any]:"""Get the identifying parameters."""_model_kwargs=self.model_kwargsor{}return{**{"model_kwargs":_model_kwargs},}@propertydef_llm_type(self)->str:"""Return type of llm."""return"azureml_chat_endpoint"def_generate(self,messages:List[BaseMessage],stop:Optional[List[str]]=None,run_manager:Optional[CallbackManagerForLLMRun]=None,**kwargs:Any,)->ChatResult:"""Call out to an AzureML Managed Online endpoint. Args: messages: The messages in the conversation with the chat model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = azureml_model.invoke("Tell me a joke.") """_model_kwargs=self.model_kwargsor{}_model_kwargs.update(kwargs)ifstop:_model_kwargs["stop"]=stoprequest_payload=self.content_formatter.format_messages_request_payload(messages,_model_kwargs,self.endpoint_api_type)response_payload=self.http_client.call(body=request_payload,run_manager=run_manager)generations=self.content_formatter.format_response_payload(response_payload,self.endpoint_api_type)returnChatResult(generations=[generations])def_stream(self,messages:List[BaseMessage],stop:Optional[List[str]]=None,run_manager:Optional[CallbackManagerForLLMRun]=None,**kwargs:Any,)->Iterator[ChatGenerationChunk]:self.endpoint_url=self.endpoint_url.replace("/chat/completions","")timeout=Noneif"timeout"notinkwargselsekwargs["timeout"]importopenaiparams={}client_params={"api_key":self.endpoint_api_key.get_secret_value(),"base_url":self.endpoint_url,"timeout":timeout,"default_headers":None,"default_query":None,"http_client":None,}client=openai.OpenAI(**client_params)message_dicts=[CustomOpenAIChatContentFormatter._convert_message_to_dict(m)forminmessages]params={"stream":True,"stop":stop,"model":None,**kwargs}default_chunk_class=AIMessageChunkforchunkinclient.chat.completions.create(messages=message_dicts,**params):ifnotisinstance(chunk,dict):chunk=chunk.dict()iflen(chunk["choices"])==0:continuechoice=chunk["choices"][0]chunk=_convert_delta_to_message_chunk(choice["delta"],default_chunk_class)generation_info={}iffinish_reason:=choice.get("finish_reason"):generation_info["finish_reason"]=finish_reasonlogprobs=choice.get("logprobs")iflogprobs:generation_info["logprobs"]=logprobsdefault_chunk_class=chunk.__class__chunk=ChatGenerationChunk(message=chunk,generation_info=generation_infoorNone)ifrun_manager:run_manager.on_llm_new_token(chunk.text,chunk=chunk,logprobs=logprobs)yieldchunkasyncdef_astream(self,messages:List[BaseMessage],stop:Optional[List[str]]=None,run_manager:Optional[AsyncCallbackManagerForLLMRun]=None,**kwargs:Any,)->AsyncIterator[ChatGenerationChunk]:self.endpoint_url=self.endpoint_url.replace("/chat/completions","")timeout=Noneif"timeout"notinkwargselsekwargs["timeout"]importopenaiparams={}client_params={"api_key":self.endpoint_api_key.get_secret_value(),"base_url":self.endpoint_url,"timeout":timeout,"default_headers":None,"default_query":None,"http_client":None,}async_client=openai.AsyncOpenAI(**client_params)message_dicts=[CustomOpenAIChatContentFormatter._convert_message_to_dict(m)forminmessages]params={"stream":True,"stop":stop,"model":None,**kwargs}default_chunk_class=AIMessageChunkasyncforchunkinawaitasync_client.chat.completions.create(messages=message_dicts,**params):ifnotisinstance(chunk,dict):chunk=chunk.dict()iflen(chunk["choices"])==0:continuechoice=chunk["choices"][0]chunk=_convert_delta_to_message_chunk(choice["delta"],default_chunk_class)generation_info={}iffinish_reason:=choice.get("finish_reason"):generation_info["finish_reason"]=finish_reasonlogprobs=choice.get("logprobs")iflogprobs:generation_info["logprobs"]=logprobsdefault_chunk_class=chunk.__class__chunk=ChatGenerationChunk(message=chunk,generation_info=generation_infoorNone)ifrun_manager:awaitrun_manager.on_llm_new_token(token=chunk.text,chunk=chunk,logprobs=logprobs)yieldchunk