from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Optional,
Type,
Union,
)
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.language_models.llms import create_base_retry_decorator
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
FunctionMessage,
FunctionMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str
from langchain_core.utils.env import get_from_dict_or_env
from langchain_community.adapters.openai import convert_message_to_dict
def _convert_delta_to_message_chunk(
_dict: Any, default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
"""Convert a delta response to a message chunk."""
role = _dict.role
content = _dict.content or ""
additional_kwargs: Dict = {}
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content)
elif role == "assistant" or default_class == AIMessageChunk:
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
elif role == "system" or default_class == SystemMessageChunk:
return SystemMessageChunk(content=content)
elif role == "function" or default_class == FunctionMessageChunk:
return FunctionMessageChunk(content=content, name=_dict.name)
elif role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=content, role=role)
else:
return default_class(content=content) # type: ignore[call-arg]
[docs]def convert_dict_to_message(_dict: Any) -> BaseMessage:
"""Convert a dict response to a message."""
role = _dict.role
content = _dict.content or ""
if role == "user":
return HumanMessage(content=content)
elif role == "assistant":
content = _dict.content
additional_kwargs: Dict = {}
return AIMessage(content=content, additional_kwargs=additional_kwargs)
elif role == "system":
return SystemMessage(content=content)
elif role == "function":
return FunctionMessage(content=content, name=_dict.name)
else:
return ChatMessage(content=content, role=role)
[docs]@deprecated(
since="0.0.26",
removal="1.0",
alternative_import="langchain_fireworks.ChatFireworks",
)
class ChatFireworks(BaseChatModel):
"""Fireworks Chat models."""
model: str = "accounts/fireworks/models/llama-v2-7b-chat"
model_kwargs: dict = Field(
default_factory=lambda: {
"temperature": 0.7,
"max_tokens": 512,
"top_p": 1,
}.copy()
)
fireworks_api_key: Optional[SecretStr] = None
max_retries: int = 20
use_retry: bool = True
@property
def lc_secrets(self) -> Dict[str, str]:
return {"fireworks_api_key": "FIREWORKS_API_KEY"}
@classmethod
def is_lc_serializable(cls) -> bool:
return True
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "chat_models", "fireworks"]
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key in environment."""
try:
import fireworks.client
except ImportError as e:
raise ImportError(
"Could not import fireworks-ai python package. "
"Please install it with `pip install fireworks-ai`."
) from e
fireworks_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "fireworks_api_key", "FIREWORKS_API_KEY")
)
fireworks.client.api_key = fireworks_api_key.get_secret_value()
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fireworks-chat"
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts = self._create_message_dicts(messages)
params = {
"model": self.model,
"messages": message_dicts,
**self.model_kwargs,
**kwargs,
}
response = completion_with_retry(
self,
self.use_retry,
run_manager=run_manager,
stop=stop,
**params,
)
return self._create_chat_result(response)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts = self._create_message_dicts(messages)
params = {
"model": self.model,
"messages": message_dicts,
**self.model_kwargs,
**kwargs,
}
response = await acompletion_with_retry(
self, self.use_retry, run_manager=run_manager, stop=stop, **params
)
return self._create_chat_result(response)
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
if llm_outputs[0] is None:
return {}
return llm_outputs[0]
def _create_chat_result(self, response: Any) -> ChatResult:
generations = []
for res in response.choices:
message = convert_dict_to_message(res.message)
gen = ChatGeneration(
message=message,
generation_info=dict(finish_reason=res.finish_reason),
)
generations.append(gen)
llm_output = {"model": self.model}
return ChatResult(generations=generations, llm_output=llm_output)
def _create_message_dicts(
self, messages: List[BaseMessage]
) -> List[Dict[str, Any]]:
message_dicts = [convert_message_to_dict(m) for m in messages]
return message_dicts
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
message_dicts = self._create_message_dicts(messages)
default_chunk_class = AIMessageChunk
params = {
"model": self.model,
"messages": message_dicts,
"stream": True,
**self.model_kwargs,
**kwargs,
}
for chunk in completion_with_retry(
self, self.use_retry, run_manager=run_manager, stop=stop, **params
):
choice = chunk.choices[0]
chunk = _convert_delta_to_message_chunk(choice.delta, default_chunk_class)
finish_reason = choice.finish_reason
generation_info = (
dict(finish_reason=finish_reason) if finish_reason is not None else None
)
default_chunk_class = chunk.__class__
cg_chunk = ChatGenerationChunk(
message=chunk, generation_info=generation_info
)
if run_manager:
run_manager.on_llm_new_token(cg_chunk.text, chunk=cg_chunk)
yield cg_chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
message_dicts = self._create_message_dicts(messages)
default_chunk_class = AIMessageChunk
params = {
"model": self.model,
"messages": message_dicts,
"stream": True,
**self.model_kwargs,
**kwargs,
}
async for chunk in await acompletion_with_retry_streaming(
self, self.use_retry, run_manager=run_manager, stop=stop, **params
):
choice = chunk.choices[0]
chunk = _convert_delta_to_message_chunk(choice.delta, default_chunk_class)
finish_reason = choice.finish_reason
generation_info = (
dict(finish_reason=finish_reason) if finish_reason is not None else None
)
default_chunk_class = chunk.__class__
cg_chunk = ChatGenerationChunk(
message=chunk, generation_info=generation_info
)
if run_manager:
await run_manager.on_llm_new_token(token=chunk.text, chunk=cg_chunk)
yield cg_chunk
[docs]def conditional_decorator(
condition: bool, decorator: Callable[[Any], Any]
) -> Callable[[Any], Any]:
"""Define conditional decorator.
Args:
condition: The condition.
decorator: The decorator.
Returns:
The decorated function.
"""
def actual_decorator(func: Callable[[Any], Any]) -> Callable[[Any], Any]:
if condition:
return decorator(func)
return func
return actual_decorator
[docs]def completion_with_retry(
llm: ChatFireworks,
use_retry: bool,
*,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the completion call."""
import fireworks.client
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
@conditional_decorator(use_retry, retry_decorator)
def _completion_with_retry(**kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
return fireworks.client.ChatCompletion.create(
**kwargs,
)
return _completion_with_retry(**kwargs)
[docs]async def acompletion_with_retry(
llm: ChatFireworks,
use_retry: bool,
*,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the async completion call."""
import fireworks.client
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
@conditional_decorator(use_retry, retry_decorator)
async def _completion_with_retry(**kwargs: Any) -> Any:
return await fireworks.client.ChatCompletion.acreate(
**kwargs,
)
return await _completion_with_retry(**kwargs)
[docs]async def acompletion_with_retry_streaming(
llm: ChatFireworks,
use_retry: bool,
*,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the completion call for streaming."""
import fireworks.client
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
@conditional_decorator(use_retry, retry_decorator)
async def _completion_with_retry(**kwargs: Any) -> Any:
return fireworks.client.ChatCompletion.acreate(
**kwargs,
)
return await _completion_with_retry(**kwargs)
def _create_retry_decorator(
llm: ChatFireworks,
run_manager: Optional[
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
] = None,
) -> Callable[[Any], Any]:
"""Define retry mechanism."""
import fireworks.client
errors = [
fireworks.client.error.RateLimitError,
fireworks.client.error.InternalServerError,
fireworks.client.error.BadGatewayError,
fireworks.client.error.ServiceUnavailableError,
]
return create_base_retry_decorator(
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
)