"""Hugging Face Chat Wrapper."""
from typing import Any, AsyncIterator, Iterator, List, Optional
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
BaseChatModel,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import (
ChatGeneration,
ChatGenerationChunk,
ChatResult,
LLMResult,
)
from langchain_core.pydantic_v1 import root_validator
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_community.llms.huggingface_hub import HuggingFaceHub
from langchain_community.llms.huggingface_text_gen_inference import (
HuggingFaceTextGenInference,
)
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful, and honest assistant."""
[docs]@deprecated(
since="0.0.37",
removal="1.0",
alternative_import="langchain_huggingface.ChatHuggingFace",
)
class ChatHuggingFace(BaseChatModel):
"""
Wrapper for using Hugging Face LLM's as ChatModels.
Works with `HuggingFaceTextGenInference`, `HuggingFaceEndpoint`,
and `HuggingFaceHub` LLMs.
Upon instantiating this class, the model_id is resolved from the url
provided to the LLM, and the appropriate tokenizer is loaded from
the HuggingFace Hub.
Adapted from: https://python.langchain.com/docs/integrations/chat/llama2_chat
"""
llm: Any
"""LLM, must be of type HuggingFaceTextGenInference, HuggingFaceEndpoint, or
HuggingFaceHub."""
system_message: SystemMessage = SystemMessage(content=DEFAULT_SYSTEM_PROMPT)
tokenizer: Any = None
model_id: Optional[str] = None
streaming: bool = False
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
from transformers import AutoTokenizer
self._resolve_model_id()
self.tokenizer = (
AutoTokenizer.from_pretrained(self.model_id)
if self.tokenizer is None
else self.tokenizer
)
@root_validator(pre=False, skip_on_failure=True)
def validate_llm(cls, values: dict) -> dict:
if not isinstance(
values["llm"],
(HuggingFaceTextGenInference, HuggingFaceEndpoint, HuggingFaceHub),
):
raise TypeError(
"Expected llm to be one of HuggingFaceTextGenInference, "
f"HuggingFaceEndpoint, HuggingFaceHub, received {type(values['llm'])}"
)
return values
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
request = self._to_chat_prompt(messages)
for data in self.llm.stream(request, **kwargs):
delta = data
chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
if run_manager:
run_manager.on_llm_new_token(delta, chunk=chunk)
yield chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
request = self._to_chat_prompt(messages)
async for data in self.llm.astream(request, **kwargs):
delta = data
chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
if run_manager:
await run_manager.on_llm_new_token(delta, chunk=chunk)
yield chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
llm_input = self._to_chat_prompt(messages)
llm_result = self.llm._generate(
prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs
)
return self._to_chat_result(llm_result)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
llm_input = self._to_chat_prompt(messages)
llm_result = await self.llm._agenerate(
prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs
)
return self._to_chat_result(llm_result)
def _to_chat_prompt(
self,
messages: List[BaseMessage],
) -> str:
"""Convert a list of messages into a prompt format expected by wrapped LLM."""
if not messages:
raise ValueError("At least one HumanMessage must be provided!")
if not isinstance(messages[-1], HumanMessage):
raise ValueError("Last message must be a HumanMessage!")
messages_dicts = [self._to_chatml_format(m) for m in messages]
return self.tokenizer.apply_chat_template(
messages_dicts, tokenize=False, add_generation_prompt=True
)
def _to_chatml_format(self, message: BaseMessage) -> dict:
"""Convert LangChain message to ChatML format."""
if isinstance(message, SystemMessage):
role = "system"
elif isinstance(message, AIMessage):
role = "assistant"
elif isinstance(message, HumanMessage):
role = "user"
else:
raise ValueError(f"Unknown message type: {type(message)}")
return {"role": role, "content": message.content}
@staticmethod
def _to_chat_result(llm_result: LLMResult) -> ChatResult:
chat_generations = []
for g in llm_result.generations[0]:
chat_generation = ChatGeneration(
message=AIMessage(content=g.text), generation_info=g.generation_info
)
chat_generations.append(chat_generation)
return ChatResult(
generations=chat_generations, llm_output=llm_result.llm_output
)
def _resolve_model_id(self) -> None:
"""Resolve the model_id from the LLM's inference_server_url"""
from huggingface_hub import list_inference_endpoints
available_endpoints = list_inference_endpoints("*")
if isinstance(self.llm, HuggingFaceHub) or (
hasattr(self.llm, "repo_id") and self.llm.repo_id
):
self.model_id = self.llm.repo_id
return
elif isinstance(self.llm, HuggingFaceTextGenInference):
endpoint_url: Optional[str] = self.llm.inference_server_url
else:
endpoint_url = self.llm.endpoint_url
for endpoint in available_endpoints:
if endpoint.url == endpoint_url:
self.model_id = endpoint.repository
if not self.model_id:
raise ValueError(
"Failed to resolve model_id:"
f"Could not find model id for inference server: {endpoint_url}"
"Make sure that your Hugging Face token has access to the endpoint."
)
@property
def _llm_type(self) -> str:
return "huggingface-chat-wrapper"