Source code for langchain_community.chat_models.maritalk

import json
from http import HTTPStatus
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union

import requests
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field
from requests import Response
from requests.exceptions import HTTPError


[docs]class MaritalkHTTPError(HTTPError): def __init__(self, request_obj: Response) -> None: self.request_obj = request_obj try: response_json = request_obj.json() if "detail" in response_json: api_message = response_json["detail"] elif "message" in response_json: api_message = response_json["message"] else: api_message = response_json except Exception: api_message = request_obj.text self.message = api_message self.status_code = request_obj.status_code def __str__(self) -> str: status_code_meaning = HTTPStatus(self.status_code).phrase formatted_message = f"HTTP Error: {self.status_code} - {status_code_meaning}" formatted_message += f"\nDetail: {self.message}" return formatted_message
[docs]class ChatMaritalk(BaseChatModel): """`MariTalk` Chat models API. This class allows interacting with the MariTalk chatbot API. To use it, you must provide an API key either through the constructor. Example: .. code-block:: python from langchain_community.chat_models import ChatMaritalk chat = ChatMaritalk(api_key="your_api_key_here") """ api_key: str """Your MariTalk API key.""" model: str """Chose one of the available models: - `sabia-2-medium` - `sabia-2-small` - `sabia-2-medium-2024-03-13` - `sabia-2-small-2024-03-13` - `maritalk-2024-01-08` (deprecated)""" temperature: float = Field(default=0.7, gt=0.0, lt=1.0) """Run inference with this temperature. Must be in the closed interval [0.0, 1.0].""" max_tokens: int = Field(default=512, gt=0) """The maximum number of tokens to generate in the reply.""" do_sample: bool = Field(default=True) """Whether or not to use sampling; use `True` to enable.""" top_p: float = Field(default=0.95, gt=0.0, lt=1.0) """Nucleus sampling parameter controlling the size of the probability mass considered for sampling.""" @property def _llm_type(self) -> str: """Identifies the LLM type as 'maritalk'.""" return "maritalk"
[docs] def parse_messages_for_model( self, messages: List[BaseMessage] ) -> List[Dict[str, Union[str, List[Union[str, Dict[Any, Any]]]]]]: """ Parses messages from LangChain's format to the format expected by the MariTalk API. Parameters: messages (List[BaseMessage]): A list of messages in LangChain format to be parsed. Returns: A list of messages formatted for the MariTalk API. """ parsed_messages = [] for message in messages: if isinstance(message, HumanMessage): role = "user" elif isinstance(message, AIMessage): role = "assistant" elif isinstance(message, SystemMessage): role = "system" parsed_messages.append({"role": role, "content": message.content}) return parsed_messages
def _call( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """ Sends the parsed messages to the MariTalk API and returns the generated response or an error message. This method makes an HTTP POST request to the MariTalk API with the provided messages and other parameters. If the request is successful and the API returns a response, this method returns a string containing the answer. If the request is rate-limited or encounters another error, it returns a string with the error message. Parameters: messages (List[BaseMessage]): Messages to send to the model. stop (Optional[List[str]]): Tokens that will signal the model to stop generating further tokens. Returns: str: If the API call is successful, returns the answer. If an error occurs (e.g., rate limiting), returns a string describing the error. """ url = "https://chat.maritaca.ai/api/chat/inference" headers = {"authorization": f"Key {self.api_key}"} stopping_tokens = stop if stop is not None else [] parsed_messages = self.parse_messages_for_model(messages) data = { "messages": parsed_messages, "model": self.model, "do_sample": self.do_sample, "max_tokens": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "stopping_tokens": stopping_tokens, **kwargs, } response = requests.post(url, json=data, headers=headers) if response.ok: return response.json().get("answer", "No answer found") else: raise MaritalkHTTPError(response) async def _acall( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """ Asynchronously sends the parsed messages to the MariTalk API and returns the generated response or an error message. This method makes an HTTP POST request to the MariTalk API with the provided messages and other parameters using async I/O. If the request is successful and the API returns a response, this method returns a string containing the answer. If the request is rate-limited or encounters another error, it returns a string with the error message. """ try: import httpx url = "https://chat.maritaca.ai/api/chat/inference" headers = {"authorization": f"Key {self.api_key}"} stopping_tokens = stop if stop is not None else [] parsed_messages = self.parse_messages_for_model(messages) data = { "messages": parsed_messages, "model": self.model, "do_sample": self.do_sample, "max_tokens": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "stopping_tokens": stopping_tokens, **kwargs, } async with httpx.AsyncClient() as client: response = await client.post( url, json=data, headers=headers, timeout=None ) if response.status_code == 200: return response.json().get("answer", "No answer found") else: raise MaritalkHTTPError(response) # type: ignore[arg-type] except ImportError: raise ImportError( "Could not import httpx python package. " "Please install it with `pip install httpx`." ) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: headers = {"Authorization": f"Key {self.api_key}"} stopping_tokens = stop if stop is not None else [] parsed_messages = self.parse_messages_for_model(messages) data = { "messages": parsed_messages, "model": self.model, "do_sample": self.do_sample, "max_tokens": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "stopping_tokens": stopping_tokens, "stream": True, **kwargs, } response = requests.post( "https://chat.maritaca.ai/api/chat/inference", data=json.dumps(data), headers=headers, stream=True, ) if response.ok: for line in response.iter_lines(): if line.startswith(b"data: "): response_data = line.replace(b"data: ", b"").decode("utf-8") if response_data: parsed_data = json.loads(response_data) if "text" in parsed_data: delta = parsed_data["text"] chunk = ChatGenerationChunk( message=AIMessageChunk(content=delta) ) if run_manager: run_manager.on_llm_new_token(delta, chunk=chunk) yield chunk else: raise MaritalkHTTPError(response) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: try: import httpx headers = {"Authorization": f"Key {self.api_key}"} stopping_tokens = stop if stop is not None else [] parsed_messages = self.parse_messages_for_model(messages) data = { "messages": parsed_messages, "model": self.model, "do_sample": self.do_sample, "max_tokens": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "stopping_tokens": stopping_tokens, "stream": True, **kwargs, } async with httpx.AsyncClient() as client: async with client.stream( "POST", "https://chat.maritaca.ai/api/chat/inference", data=json.dumps(data), # type: ignore[arg-type] headers=headers, timeout=None, ) as response: if response.status_code == 200: async for line in response.aiter_lines(): if line.startswith("data: "): response_data = line.replace("data: ", "") if response_data: parsed_data = json.loads(response_data) if "text" in parsed_data: delta = parsed_data["text"] chunk = ChatGenerationChunk( message=AIMessageChunk(content=delta) ) if run_manager: await run_manager.on_llm_new_token( delta, chunk=chunk ) yield chunk else: raise MaritalkHTTPError(response) # type: ignore[arg-type] except ImportError: raise ImportError( "Could not import httpx python package. " "Please install it with `pip install httpx`." ) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: output_str = self._call(messages, stop=stop, run_manager=run_manager, **kwargs) message = AIMessage(content=output_str) generation = ChatGeneration(message=message) return ChatResult(generations=[generation]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: output_str = await self._acall( messages, stop=stop, run_manager=run_manager, **kwargs ) message = AIMessage(content=output_str) generation = ChatGeneration(message=message) return ChatResult(generations=[generation]) @property def _identifying_params(self) -> Dict[str, Any]: """ Identifies the key parameters of the chat model for logging or tracking purposes. Returns: A dictionary of the key configuration parameters. """ return { "model": self.model, "temperature": self.temperature, "top_p": self.top_p, "max_tokens": self.max_tokens, }