import json
import re
import uuid
from abc import ABC, abstractmethod
from typing import (
Any,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
Sequence,
Type,
Union,
)
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
ChatMessage,
HumanMessage,
SystemMessage,
ToolCall,
ToolMessage,
)
from langchain_core.messages.tool import ToolCallChunk
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
JsonOutputKeyToolsParser,
PydanticToolsParser,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_community.llms.oci_generative_ai import OCIGenAIBase
from langchain_community.llms.utils import enforce_stop_tokens
CUSTOM_ENDPOINT_PREFIX = "ocid1.generativeaiendpoint"
JSON_TO_PYTHON_TYPES = {
"string": "str",
"number": "float",
"boolean": "bool",
"integer": "int",
"array": "List",
"object": "Dict",
}
def _remove_signature_from_tool_description(name: str, description: str) -> str:
"""
Removes the `{name}{signature} - ` prefix and Args: section from tool description.
The signature is usually present for tools created with the @tool decorator,
whereas the Args: section may be present in function doc blocks.
"""
description = re.sub(rf"^{name}\(.*?\) -(?:> \w+? -)? ", "", description)
description = re.sub(r"(?s)(?:\n?\n\s*?)?Args:.*$", "", description)
return description
def _format_oci_tool_calls(
tool_calls: Optional[List[Any]] = None,
) -> List[Dict]:
"""
Formats a OCI GenAI API response into the tool call format used in Langchain.
"""
if not tool_calls:
return []
formatted_tool_calls = []
for tool_call in tool_calls:
formatted_tool_calls.append(
{
"id": uuid.uuid4().hex[:],
"function": {
"name": tool_call.name,
"arguments": json.dumps(tool_call.parameters),
},
"type": "function",
}
)
return formatted_tool_calls
def _convert_oci_tool_call_to_langchain(tool_call: Any) -> ToolCall:
"""Convert a OCI GenAI tool call into langchain_core.messages.ToolCall"""
_id = uuid.uuid4().hex[:]
return ToolCall(name=tool_call.name, args=tool_call.parameters, id=_id)
[docs]class Provider(ABC):
@property
@abstractmethod
def stop_sequence_key(self) -> str: ...
[docs] @abstractmethod
def chat_response_to_text(self, response: Any) -> str: ...
[docs] @abstractmethod
def chat_stream_to_text(self, event_data: Dict) -> str: ...
[docs] @abstractmethod
def is_chat_stream_end(self, event_data: Dict) -> bool: ...
[docs] @abstractmethod
def chat_generation_info(self, response: Any) -> Dict[str, Any]: ...
[docs] @abstractmethod
def chat_stream_generation_info(self, event_data: Dict) -> Dict[str, Any]: ...
[docs] @abstractmethod
def get_role(self, message: BaseMessage) -> str: ...
[docs] @abstractmethod
def messages_to_oci_params(
self, messages: Any, **kwargs: Any
) -> Dict[str, Any]: ...
self,
tool: Union[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
) -> Dict[str, Any]: ...
[docs]class CohereProvider(Provider):
stop_sequence_key: str = "stop_sequences"
[docs] def __init__(self) -> None:
from oci.generative_ai_inference import models
self.oci_chat_request = models.CohereChatRequest
self.oci_tool = models.CohereTool
self.oci_tool_param = models.CohereParameterDefinition
self.oci_tool_result = models.CohereToolResult
self.oci_tool_call = models.CohereToolCall
self.oci_chat_message = {
"USER": models.CohereUserMessage,
"CHATBOT": models.CohereChatBotMessage,
"SYSTEM": models.CohereSystemMessage,
"TOOL": models.CohereToolMessage,
}
self.chat_api_format = models.BaseChatRequest.API_FORMAT_COHERE
[docs] def chat_response_to_text(self, response: Any) -> str:
return response.data.chat_response.text
[docs] def chat_stream_to_text(self, event_data: Dict) -> str:
if "text" in event_data:
return event_data["text"]
else:
return ""
[docs] def is_chat_stream_end(self, event_data: Dict) -> bool:
return "finishReason" in event_data
[docs] def chat_generation_info(self, response: Any) -> Dict[str, Any]:
generation_info: Dict[str, Any] = {
"documents": response.data.chat_response.documents,
"citations": response.data.chat_response.citations,
"search_queries": response.data.chat_response.search_queries,
"is_search_required": response.data.chat_response.is_search_required,
"finish_reason": response.data.chat_response.finish_reason,
}
if response.data.chat_response.tool_calls:
# Only populate tool_calls when 1) present on the response and
# 2) has one or more calls.
generation_info["tool_calls"] = _format_oci_tool_calls(
response.data.chat_response.tool_calls
)
return generation_info
[docs] def chat_stream_generation_info(self, event_data: Dict) -> Dict[str, Any]:
generation_info: Dict[str, Any] = {
"documents": event_data.get("documents"),
"citations": event_data.get("citations"),
"finish_reason": event_data.get("finishReason"),
}
if "toolCalls" in event_data:
generation_info["tool_calls"] = []
for tool_call in event_data["toolCalls"]:
generation_info["tool_calls"].append(
{
"id": uuid.uuid4().hex[:],
"function": {
"name": tool_call["name"],
"arguments": json.dumps(tool_call["parameters"]),
},
"type": "function",
}
)
generation_info = {k: v for k, v in generation_info.items() if v is not None}
return generation_info
[docs] def get_role(self, message: BaseMessage) -> str:
if isinstance(message, HumanMessage):
return "USER"
elif isinstance(message, AIMessage):
return "CHATBOT"
elif isinstance(message, SystemMessage):
return "SYSTEM"
elif isinstance(message, ToolMessage):
return "TOOL"
else:
raise ValueError(f"Got unknown type {message}")
[docs] def messages_to_oci_params(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> Dict[str, Any]:
is_force_single_step = kwargs.get("is_force_single_step") or False
oci_chat_history = []
for msg in messages[:-1]:
if self.get_role(msg) == "USER" or self.get_role(msg) == "SYSTEM":
oci_chat_history.append(
self.oci_chat_message[self.get_role(msg)](message=msg.content)
)
elif isinstance(msg, AIMessage):
if msg.tool_calls and is_force_single_step:
continue
tool_calls = (
[
self.oci_tool_call(name=tc["name"], parameters=tc["args"])
for tc in msg.tool_calls
]
if msg.tool_calls
else None
)
msg_content = msg.content if msg.content else " "
oci_chat_history.append(
self.oci_chat_message[self.get_role(msg)](
message=msg_content, tool_calls=tool_calls
)
)
# Get the messages for the current chat turn
current_chat_turn_messages = []
for message in messages[::-1]:
current_chat_turn_messages.append(message)
if isinstance(message, HumanMessage):
break
current_chat_turn_messages = current_chat_turn_messages[::-1]
oci_tool_results: Union[List[Any], None] = []
for message in current_chat_turn_messages:
if isinstance(message, ToolMessage):
tool_message = message
previous_ai_msgs = [
message
for message in current_chat_turn_messages
if isinstance(message, AIMessage) and message.tool_calls
]
if previous_ai_msgs:
previous_ai_msg = previous_ai_msgs[-1]
for lc_tool_call in previous_ai_msg.tool_calls:
if lc_tool_call["id"] == tool_message.tool_call_id:
tool_result = self.oci_tool_result()
tool_result.call = self.oci_tool_call(
name=lc_tool_call["name"],
parameters=lc_tool_call["args"],
)
tool_result.outputs = [{"output": tool_message.content}]
oci_tool_results.append(tool_result)
if not oci_tool_results:
oci_tool_results = None
message_str = "" if oci_tool_results else messages[-1].content
oci_params = {
"message": message_str,
"chat_history": oci_chat_history,
"tool_results": oci_tool_results,
"api_format": self.chat_api_format,
}
return {k: v for k, v in oci_params.items() if v is not None}
[docs]class ChatOCIGenAI(BaseChatModel, OCIGenAIBase):
"""ChatOCIGenAI chat model integration.
Setup:
Install ``langchain-community`` and the ``oci`` sdk.
.. code-block:: bash
pip install -U langchain-community oci
Key init args — completion params:
model_id: str
Id of the OCIGenAI chat model to use, e.g., cohere.command-r-16k.
is_stream: bool
Whether to stream back partial progress
model_kwargs: Optional[Dict]
Keyword arguments to pass to the specific model used, e.g., temperature, max_tokens.
Key init args — client params:
service_endpoint: str
The endpoint URL for the OCIGenAI service, e.g., https://inference.generativeai.us-chicago-1.oci.oraclecloud.com.
compartment_id: str
The compartment OCID.
auth_type: str
The authentication type to use, e.g., API_KEY (default), SECURITY_TOKEN, INSTANCE_PRINCIPAL, RESOURCE_PRINCIPAL.
auth_profile: Optional[str]
The name of the profile in ~/.oci/config, if not specified , DEFAULT will be used.
provider: str
Provider name of the model. Default to None, will try to be derived from the model_id otherwise, requires user input.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_community.chat_models import ChatOCIGenAI
chat = ChatOCIGenAI(
model_id="cohere.command-r-16k",
service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com",
compartment_id="MY_OCID",
model_kwargs={"temperature": 0.7, "max_tokens": 500},
)
Invoke:
.. code-block:: python
messages = [
SystemMessage(content="your are an AI assistant."),
AIMessage(content="Hi there human!"),
HumanMessage(content="tell me a joke."),
]
response = chat.invoke(messages)
Stream:
.. code-block:: python
for r in chat.stream(messages):
print(r.content, end="", flush=True)
Response metadata
.. code-block:: python
response = chat.invoke(messages)
print(response.response_metadata)
""" # noqa: E501
class Config:
extra = "forbid"
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "oci_generative_ai_chat"
@property
def _provider_map(self) -> Mapping[str, Any]:
"""Get the provider map"""
return {
"cohere": CohereProvider(),
"meta": MetaProvider(),
}
@property
def _provider(self) -> Any:
"""Get the internal provider object"""
return self._get_provider(provider_map=self._provider_map)
def _prepare_request(
self,
messages: List[BaseMessage],
stop: Optional[List[str]],
stream: bool,
**kwargs: Any,
) -> Dict[str, Any]:
try:
from oci.generative_ai_inference import models
except ImportError as ex:
raise ModuleNotFoundError(
"Could not import oci python package. "
"Please make sure you have the oci package installed."
) from ex
oci_params = self._provider.messages_to_oci_params(messages, **kwargs)
oci_params["is_stream"] = stream
_model_kwargs = self.model_kwargs or {}
if stop is not None:
_model_kwargs[self._provider.stop_sequence_key] = stop
chat_params = {**_model_kwargs, **kwargs, **oci_params}
if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX):
serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id)
else:
serving_mode = models.OnDemandServingMode(model_id=self.model_id)
request = models.ChatDetails(
compartment_id=self.compartment_id,
serving_mode=serving_mode,
chat_request=self._provider.oci_chat_request(**chat_params),
)
return request
[docs] def with_structured_output(
self,
schema: Union[Dict[Any, Any], Type[BaseModel]],
**kwargs: Any,
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
"""Model wrapper that returns outputs formatted to match the given schema.
Args:
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
then the model output will be an object of that class. If a dict then
the model output will be a dict.
Returns:
A Runnable that takes any ChatModel input and returns either a dict or
Pydantic class as output.
"""
llm = self.bind_tools([schema], **kwargs)
if isinstance(schema, type) and issubclass(schema, BaseModel):
output_parser: OutputParserLike = PydanticToolsParser(
tools=[schema], first_tool_only=True
)
else:
key_name = getattr(self._provider.convert_to_oci_tool(schema), "name")
output_parser = JsonOutputKeyToolsParser(
key_name=key_name, first_tool_only=True
)
return llm | output_parser
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Call out to a OCIGenAI chat model.
Args:
messages: list of LangChain messages
stop: Optional list of stop words to use.
Returns:
LangChain ChatResult
Example:
.. code-block:: python
messages = [
HumanMessage(content="hello!"),
AIMessage(content="Hi there human!"),
HumanMessage(content="Meow!")
]
response = llm.invoke(messages)
"""
if self.is_stream:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
request = self._prepare_request(messages, stop=stop, stream=False, **kwargs)
response = self.client.chat(request)
content = self._provider.chat_response_to_text(response)
if stop is not None:
content = enforce_stop_tokens(content, stop)
generation_info = self._provider.chat_generation_info(response)
llm_output = {
"model_id": response.data.model_id,
"model_version": response.data.model_version,
"request_id": response.request_id,
"content-length": response.headers["content-length"],
}
if "tool_calls" in generation_info:
tool_calls = [
_convert_oci_tool_call_to_langchain(tool_call)
for tool_call in response.data.chat_response.tool_calls
]
else:
tool_calls = []
message = AIMessage(
content=content,
additional_kwargs=generation_info,
tool_calls=tool_calls,
)
return ChatResult(
generations=[
ChatGeneration(message=message, generation_info=generation_info)
],
llm_output=llm_output,
)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
request = self._prepare_request(messages, stop=stop, stream=True, **kwargs)
response = self.client.chat(request)
for event in response.data.events():
event_data = json.loads(event.data)
if not self._provider.is_chat_stream_end(event_data): # still streaming
delta = self._provider.chat_stream_to_text(event_data)
chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
if run_manager:
run_manager.on_llm_new_token(delta, chunk=chunk)
yield chunk
else: # stream end
generation_info = self._provider.chat_stream_generation_info(event_data)
tool_call_chunks = []
if tool_calls := generation_info.get("tool_calls"):
content = self._provider.chat_stream_to_text(event_data)
try:
tool_call_chunks = [
ToolCallChunk(
name=tool_call["function"].get("name"),
args=tool_call["function"].get("arguments"),
id=tool_call.get("id"),
index=tool_call.get("index"),
)
for tool_call in tool_calls
]
except KeyError:
pass
else:
content = ""
message = AIMessageChunk(
content=content,
additional_kwargs=generation_info,
tool_call_chunks=tool_call_chunks,
)
yield ChatGenerationChunk(
message=message,
generation_info=generation_info,
)