[docs]@contextmanagerdefconnect_sse(client:Any,method:str,url:str,**kwargs:Any)->Iterator:"""Context manager for connecting to an SSE stream. Args: client: The HTTP client. method: The HTTP method. url: The URL. kwargs: Additional keyword arguments. Yields: The event source. """fromhttpx_sseimportEventSourcewithclient.stream(method,url,**kwargs)asresponse:yieldEventSource(response)
[docs]@asynccontextmanagerasyncdefaconnect_sse(client:Any,method:str,url:str,**kwargs:Any)->AsyncIterator:"""Async context manager for connecting to an SSE stream. Args: client: The HTTP client. method: The HTTP method. url: The URL. kwargs: Additional keyword arguments. Yields: The event source. """fromhttpx_sseimportEventSourceasyncwithclient.stream(method,url,**kwargs)asresponse:yieldEventSource(response)
def_get_jwt_token(api_key:str)->str:"""Gets JWT token for ZhipuAI API. See 'https://open.bigmodel.cn/dev/api#nosdk'. Args: api_key: The API key for ZhipuAI API. Returns: The JWT token. """try:importjwtexceptImportError:raiseImportError("jwt package not found, please install it with""`pip install pyjwt`")try:id,secret=api_key.split(".")exceptValueErroraserr:raiseValueError(f"Invalid API key: {api_key}")fromerrpayload={"api_key":id,"exp":int(round(time.time()*1000))+API_TOKEN_TTL_SECONDS*1000,"timestamp":int(round(time.time()*1000)),}returnjwt.encode(payload,secret,algorithm="HS256",headers={"alg":"HS256","sign_type":"SIGN"},)def_convert_dict_to_message(dct:Dict[str,Any])->BaseMessage:role=dct.get("role")content=dct.get("content","")ifrole=="system":returnSystemMessage(content=content)ifrole=="user":returnHumanMessage(content=content)ifrole=="assistant":additional_kwargs={}tool_calls=dct.get("tool_calls",None)iftool_callsisnotNone:additional_kwargs["tool_calls"]=tool_callsreturnAIMessage(content=content,additional_kwargs=additional_kwargs)ifrole=="tool":additional_kwargs={}if"name"indct:additional_kwargs["name"]=dct["name"]returnToolMessage(content=content,tool_call_id=dct.get("tool_call_id"),# type: ignore[arg-type]additional_kwargs=additional_kwargs,)returnChatMessage(role=role,content=content)# type: ignore[arg-type]def_convert_message_to_dict(message:BaseMessage)->Dict[str,Any]:"""Convert a LangChain message to a dictionary. Args: message: The LangChain message. Returns: The dictionary. """message_dict:Dict[str,Any]ifisinstance(message,ChatMessage):message_dict={"role":message.role,"content":message.content}elifisinstance(message,SystemMessage):message_dict={"role":"system","content":message.content}elifisinstance(message,HumanMessage):message_dict={"role":"user","content":message.content}elifisinstance(message,AIMessage):message_dict={"role":"assistant","content":message.content}elifisinstance(message,ToolMessage):message_dict={"role":"tool","content":message.content,"tool_call_id":message.tool_call_id,"name":message.nameormessage.additional_kwargs.get("name"),}else:raiseTypeError(f"Got unknown type '{message.__class__.__name__}'.")returnmessage_dictdef_convert_delta_to_message_chunk(dct:Dict[str,Any],default_class:Type[BaseMessageChunk])->BaseMessageChunk:role=dct.get("role")content=dct.get("content","")additional_kwargs={}tool_calls=dct.get("tool_call",None)iftool_callsisnotNone:additional_kwargs["tool_calls"]=tool_callsifrole=="system"ordefault_class==SystemMessageChunk:returnSystemMessageChunk(content=content)ifrole=="user"ordefault_class==HumanMessageChunk:returnHumanMessageChunk(content=content)ifrole=="assistant"ordefault_class==AIMessageChunk:returnAIMessageChunk(content=content,additional_kwargs=additional_kwargs)ifroleordefault_class==ChatMessageChunk:returnChatMessageChunk(content=content,role=role)# type: ignore[arg-type]returndefault_class(content=content)# type: ignore[call-arg]def_truncate_params(payload:Dict[str,Any])->None:"""Truncate temperature and top_p parameters between [0.01, 0.99]. ZhipuAI only support temperature / top_p between (0, 1) open interval, so we truncate them to [0.01, 0.99]. """temperature=payload.get("temperature")top_p=payload.get("top_p")iftemperatureisnotNone:payload["temperature"]=max(0.01,min(0.99,temperature))iftop_pisnotNone:payload["top_p"]=max(0.01,min(0.99,top_p))
[docs]classChatZhipuAI(BaseChatModel):"""ZhipuAI chat model integration. Setup: Install ``PyJWT`` and set environment variable ``ZHIPUAI_API_KEY`` .. code-block:: bash pip install pyjwt export ZHIPUAI_API_KEY="your-api-key" Key init args — completion params: model: Optional[str] Name of ZhipuAI model to use. temperature: float Sampling temperature. max_tokens: Optional[int] Max number of tokens to generate. Key init args — client params: api_key: Optional[str] ZhipuAI API key. If not passed in will be read from env var ZHIPUAI_API_KEY. api_base: Optional[str] Base URL for API requests. See full list of supported init args and their descriptions in the params section. Instantiate: .. code-block:: python from langchain_community.chat_models import ChatZhipuAI zhipuai_chat = ChatZhipuAI( temperature=0.5, api_key="your-api-key", model="glm-4", # api_base="...", # other params... ) Invoke: .. code-block:: python messages = [ ("system", "你是一名专业的翻译家,可以将用户的中文翻译为英文。"), ("human", "我喜欢编程。"), ] zhipuai_chat.invoke(messages) .. code-block:: python AIMessage(content='I enjoy programming.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 23, 'total_tokens': 29}, 'model_name': 'glm-4', 'finish_reason': 'stop'}, id='run-c5d9af91-55c6-470e-9545-02b2fa0d7f9d-0') Stream: .. code-block:: python for chunk in zhipuai_chat.stream(messages): print(chunk) .. code-block:: python content='I' id='run-4df71729-618f-4e2b-a4ff-884682723082' content=' enjoy' id='run-4df71729-618f-4e2b-a4ff-884682723082' content=' programming' id='run-4df71729-618f-4e2b-a4ff-884682723082' content='.' id='run-4df71729-618f-4e2b-a4ff-884682723082' content='' response_metadata={'finish_reason': 'stop'} id='run-4df71729-618f-4e2b-a4ff-884682723082' .. code-block:: python stream = zhipuai_chat.stream(messages) full = next(stream) for chunk in stream: full += chunk full .. code-block:: AIMessageChunk(content='I enjoy programming.', response_metadata={'finish_reason': 'stop'}, id='run-20b05040-a0b4-4715-8fdc-b39dba9bfb53') Async: .. code-block:: python await zhipuai_chat.ainvoke(messages) # stream: # async for chunk in zhipuai_chat.astream(messages): # print(chunk) # batch: # await zhipuai_chat.abatch([messages]) .. code-block:: python [AIMessage(content='I enjoy programming.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 23, 'total_tokens': 29}, 'model_name': 'glm-4', 'finish_reason': 'stop'}, id='run-ba06af9d-4baa-40b2-9298-be9c62aa0849-0')] Tool calling: .. code-block:: python from langchain_core.pydantic_v1 import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' location: str = Field( ..., description="The city and state, e.g. San Francisco, CA" ) class GetPopulation(BaseModel): '''Get the current population in a given location''' location: str = Field( ..., description="The city and state, e.g. San Francisco, CA" ) chat_with_tools = zhipuai_chat.bind_tools([GetWeather, GetPopulation]) ai_msg = chat_with_tools.invoke( "Which city is hotter today and which is bigger: LA or NY?" ) ai_msg.tool_calls .. code-block:: python [ { 'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'call_202408222146464ea49ec8731145a9', 'type': 'tool_call' } ] Structured output: .. code-block:: python from typing import Optional from langchain_core.pydantic_v1 import BaseModel, Field class Joke(BaseModel): '''Joke to tell user.''' setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10") structured_chat = zhipuai_chat.with_structured_output(Joke) structured_chat.invoke("Tell me a joke about cats") .. code-block:: python Joke(setup='What do cats like to eat for breakfast?', punchline='Mice Krispies!', rating=None) Response metadata .. code-block:: python ai_msg = zhipuai_chat.invoke(messages) ai_msg.response_metadata .. code-block:: python {'token_usage': {'completion_tokens': 6, 'prompt_tokens': 23, 'total_tokens': 29}, 'model_name': 'glm-4', 'finish_reason': 'stop'} """# noqa: E501@propertydeflc_secrets(self)->Dict[str,str]:return{"zhipuai_api_key":"ZHIPUAI_API_KEY"}@classmethoddefget_lc_namespace(cls)->List[str]:"""Get the namespace of the langchain object."""return["langchain","chat_models","zhipuai"]@propertydeflc_attributes(self)->Dict[str,Any]:attributes:Dict[str,Any]={}ifself.zhipuai_api_base:attributes["zhipuai_api_base"]=self.zhipuai_api_basereturnattributes@propertydef_llm_type(self)->str:"""Return the type of chat model."""return"zhipuai-chat"@propertydef_default_params(self)->Dict[str,Any]:"""Get the default parameters for calling OpenAI API."""params={"model":self.model_name,"stream":self.streaming,"temperature":self.temperature,}ifself.max_tokensisnotNone:params["max_tokens"]=self.max_tokensreturnparams# client:zhipuai_api_key:Optional[str]=Field(default=None,alias="api_key")"""Automatically inferred from env var `ZHIPUAI_API_KEY` if not provided."""zhipuai_api_base:Optional[str]=Field(default=None,alias="api_base")"""Base URL path for API requests, leave blank if not using a proxy or service emulator. """model_name:Optional[str]=Field(default="glm-4",alias="model")""" Model name to use, see 'https://open.bigmodel.cn/dev/api#language'. Alternatively, you can use any fine-tuned model from the GLM series. """temperature:float=0.95""" What sampling temperature to use. The value ranges from 0.0 to 1.0 and cannot be equal to 0. The larger the value, the more random and creative the output; The smaller the value, the more stable or certain the output will be. You are advised to adjust top_p or temperature parameters based on application scenarios, but do not adjust the two parameters at the same time. """top_p:float=0.7""" Another method of sampling temperature is called nuclear sampling. The value ranges from 0.0 to 1.0 and cannot be equal to 0 or 1. The model considers the results with top_p probability quality tokens. For example, 0.1 means that the model decoder only considers tokens from the top 10% probability of the candidate set. You are advised to adjust top_p or temperature parameters based on application scenarios, but do not adjust the two parameters at the same time. """streaming:bool=False"""Whether to stream the results or not."""max_tokens:Optional[int]=None"""Maximum number of tokens to generate."""classConfig:allow_population_by_field_name=True@root_validator(pre=True)defvalidate_environment(cls,values:Dict[str,Any])->Dict[str,Any]:values["zhipuai_api_key"]=get_from_dict_or_env(values,["zhipuai_api_key","api_key"],"ZHIPUAI_API_KEY")values["zhipuai_api_base"]=get_from_dict_or_env(values,"zhipuai_api_base","ZHIPUAI_API_BASE",default=ZHIPUAI_API_BASE)returnvaluesdef_create_message_dicts(self,messages:List[BaseMessage],stop:Optional[List[str]])->Tuple[List[Dict[str,Any]],Dict[str,Any]]:params=self._default_paramsifstopisnotNone:params["stop"]=stopmessage_dicts=[_convert_message_to_dict(m)forminmessages]returnmessage_dicts,paramsdef_create_chat_result(self,response:Union[dict,BaseModel])->ChatResult:generations=[]ifnotisinstance(response,dict):response=response.dict()forresinresponse["choices"]:message=_convert_dict_to_message(res["message"])generation_info=dict(finish_reason=res.get("finish_reason"))generations.append(ChatGeneration(message=message,generation_info=generation_info))token_usage=response.get("usage",{})llm_output={"token_usage":token_usage,"model_name":self.model_name,}returnChatResult(generations=generations,llm_output=llm_output)def_generate(self,messages:List[BaseMessage],stop:Optional[List[str]]=None,run_manager:Optional[CallbackManagerForLLMRun]=None,stream:Optional[bool]=None,**kwargs:Any,)->ChatResult:"""Generate a chat response."""should_stream=streamifstreamisnotNoneelseself.streamingifshould_stream:stream_iter=self._stream(messages,stop=stop,run_manager=run_manager,**kwargs)returngenerate_from_stream(stream_iter)ifself.zhipuai_api_keyisNone:raiseValueError("Did not find zhipuai_api_key.")message_dicts,params=self._create_message_dicts(messages,stop)payload={**params,**kwargs,"messages":message_dicts,"stream":False,}_truncate_params(payload)headers={"Authorization":_get_jwt_token(self.zhipuai_api_key),"Accept":"application/json",}importhttpxwithhttpx.Client(headers=headers,timeout=60)asclient:response=client.post(self.zhipuai_api_base,json=payload)# type: ignore[arg-type]response.raise_for_status()returnself._create_chat_result(response.json())def_stream(self,messages:List[BaseMessage],stop:Optional[List[str]]=None,run_manager:Optional[CallbackManagerForLLMRun]=None,**kwargs:Any,)->Iterator[ChatGenerationChunk]:"""Stream the chat response in chunks."""ifself.zhipuai_api_keyisNone:raiseValueError("Did not find zhipuai_api_key.")ifself.zhipuai_api_baseisNone:raiseValueError("Did not find zhipu_api_base.")message_dicts,params=self._create_message_dicts(messages,stop)payload={**params,**kwargs,"messages":message_dicts,"stream":True}_truncate_params(payload)headers={"Authorization":_get_jwt_token(self.zhipuai_api_key),"Accept":"application/json",}default_chunk_class=AIMessageChunkimporthttpxwithhttpx.Client(headers=headers,timeout=60)asclient:withconnect_sse(client,"POST",self.zhipuai_api_base,json=payload)asevent_source:forsseinevent_source.iter_sse():chunk=json.loads(sse.data)iflen(chunk["choices"])==0:continuechoice=chunk["choices"][0]chunk=_convert_delta_to_message_chunk(choice["delta"],default_chunk_class)finish_reason=choice.get("finish_reason",None)generation_info=({"finish_reason":finish_reason}iffinish_reasonisnotNoneelseNone)chunk=ChatGenerationChunk(message=chunk,generation_info=generation_info)ifrun_manager:run_manager.on_llm_new_token(chunk.text,chunk=chunk)yieldchunkiffinish_reasonisnotNone:breakasyncdef_agenerate(self,messages:List[BaseMessage],stop:Optional[List[str]]=None,run_manager:Optional[AsyncCallbackManagerForLLMRun]=None,stream:Optional[bool]=None,**kwargs:Any,)->ChatResult:should_stream=streamifstreamisnotNoneelseself.streamingifshould_stream:stream_iter=self._astream(messages,stop=stop,run_manager=run_manager,**kwargs)returnawaitagenerate_from_stream(stream_iter)ifself.zhipuai_api_keyisNone:raiseValueError("Did not find zhipuai_api_key.")message_dicts,params=self._create_message_dicts(messages,stop)payload={**params,**kwargs,"messages":message_dicts,"stream":False,}_truncate_params(payload)headers={"Authorization":_get_jwt_token(self.zhipuai_api_key),"Accept":"application/json",}importhttpxasyncwithhttpx.AsyncClient(headers=headers,timeout=60)asclient:response=awaitclient.post(self.zhipuai_api_base,json=payload)# type: ignore[arg-type]response.raise_for_status()returnself._create_chat_result(response.json())asyncdef_astream(self,messages:List[BaseMessage],stop:Optional[List[str]]=None,run_manager:Optional[AsyncCallbackManagerForLLMRun]=None,**kwargs:Any,)->AsyncIterator[ChatGenerationChunk]:ifself.zhipuai_api_keyisNone:raiseValueError("Did not find zhipuai_api_key.")ifself.zhipuai_api_baseisNone:raiseValueError("Did not find zhipu_api_base.")message_dicts,params=self._create_message_dicts(messages,stop)payload={**params,**kwargs,"messages":message_dicts,"stream":True}_truncate_params(payload)headers={"Authorization":_get_jwt_token(self.zhipuai_api_key),"Accept":"application/json",}default_chunk_class=AIMessageChunkimporthttpxasyncwithhttpx.AsyncClient(headers=headers,timeout=60)asclient:asyncwithaconnect_sse(client,"POST",self.zhipuai_api_base,json=payload)asevent_source:asyncforsseinevent_source.aiter_sse():chunk=json.loads(sse.data)iflen(chunk["choices"])==0:continuechoice=chunk["choices"][0]chunk=_convert_delta_to_message_chunk(choice["delta"],default_chunk_class)finish_reason=choice.get("finish_reason",None)generation_info=({"finish_reason":finish_reason}iffinish_reasonisnotNoneelseNone)chunk=ChatGenerationChunk(message=chunk,generation_info=generation_info)ifrun_manager:awaitrun_manager.on_llm_new_token(chunk.text,chunk=chunk)yieldchunkiffinish_reasonisnotNone:break
[docs]defbind_tools(self,tools:Sequence[Union[Dict[str,Any],Type[BaseModel],Callable,BaseTool]],*,tool_choice:Optional[Union[dict,str,Literal["auto","any","none"],bool]]=None,**kwargs:Any,)->Runnable[LanguageModelInput,BaseMessage]:"""Bind tool-like objects to this chat model. Args: tools: A list of tool definitions to bind to this chat model. Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic models, callables, and BaseTools will be automatically converted to their schema dictionary representation. tool_choice: Currently this can only be auto for this chat model. **kwargs: Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor. """ifself.model_name=="glm-4v":raiseValueError("glm-4v currently does not support tool calling")formatted_tools=[convert_to_openai_tool(tool)fortoolintools]iftool_choiceandtool_choice!="auto":raiseValueError("ChatZhipuAI currently only supports `auto` tool choice")eliftool_choiceandtool_choice=="auto":kwargs["tool_choice"]=tool_choicereturnself.bind(tools=formatted_tools,**kwargs)
[docs]defwith_structured_output(self,schema:Optional[Union[Dict,Type[BaseModel]]]=None,*,method:Literal["function_calling","json_mode"]="function_calling",include_raw:bool=False,**kwargs:Any,)->Runnable[LanguageModelInput,Union[Dict,BaseModel]]:"""Model wrapper that returns outputs formatted to match the given schema. Args: schema: The output schema as a dict or a Pydantic class. If a Pydantic class then the model output will be an object of that class. If a dict then the model output will be a dict. With a Pydantic class the returned attributes will be validated, whereas with a dict they will not be. If `method` is "function_calling" and `schema` is a dict, then the dict must match the OpenAI function-calling spec. method: The method for steering model generation, either "function_calling" or "json_mode". ZhipuAI only supports "function_calling" which converts the schema to a OpenAI function and the model will make use of the function-calling API. include_raw: If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys "raw", "parsed", and "parsing_error". Returns: A Runnable that takes any ChatModel input and returns as output: If include_raw is True then a dict with keys: raw: BaseMessage parsed: Optional[_DictOrPydantic] parsing_error: Optional[BaseException] If include_raw is False then just _DictOrPydantic is returned, where _DictOrPydantic depends on the schema: If schema is a Pydantic class then _DictOrPydantic is the Pydantic class. If schema is a dict then _DictOrPydantic is a dict. Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False): .. code-block:: python from langchain_community.chat_models import ChatZhipuAI from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatZhipuAI(temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> AnswerWithJustification( # answer='A pound of bricks and a pound of feathers weigh the same.' # justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same." # ) Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True): .. code-block:: python from langchain_community.chat_models import ChatZhipuAI from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatZhipuAI(temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_01htjn3cspevxbqc1d7nkk8wab', 'function': {'arguments': '{"answer": "A pound of bricks and a pound of feathers weigh the same.", "justification": "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The \'pound\' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", "unit": "pounds"}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}, id='run-456beee6-65f6-4e80-88af-a6065480822c-0'), # 'parsed': AnswerWithJustification(answer='A pound of bricks and a pound of feathers weigh the same.', justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."), # 'parsing_error': None # } Example: Function-calling, dict schema (method="function_calling", include_raw=False): .. code-block:: python from langchain_community.chat_models import ChatZhipuAI from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str dict_schema = convert_to_openai_tool(AnswerWithJustification) llm = ChatZhipuAI(temperature=0) structured_llm = llm.with_structured_output(dict_schema) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'answer': 'A pound of bricks and a pound of feathers weigh the same.', # 'justification': "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", 'unit': 'pounds'} # } """# noqa: E501ifkwargs:raiseValueError(f"Received unsupported arguments {kwargs}")is_pydantic_schema=_is_pydantic_class(schema)ifmethod=="function_calling":ifschemaisNone:raiseValueError("schema must be specified when method is 'function_calling'. ""Received None.")tool_name=convert_to_openai_tool(schema)["function"]["name"]llm=self.bind_tools([schema],tool_choice="auto")ifis_pydantic_schema:output_parser:OutputParserLike=PydanticToolsParser(tools=[schema],# type: ignore[list-item]first_tool_only=True,# type: ignore[list-item])else:output_parser=JsonOutputKeyToolsParser(key_name=tool_name,first_tool_only=True)else:raiseValueError(f"""Unrecognized method argument. Expected 'function_calling'. Received: '{method}'""")ifinclude_raw:parser_assign=RunnablePassthrough.assign(parsed=itemgetter("raw")|output_parser,parsing_error=lambda_:None)parser_none=RunnablePassthrough.assign(parsed=lambda_:None)parser_with_fallback=parser_assign.with_fallbacks([parser_none],exception_key="parsing_error")returnRunnableMap(raw=llm)|parser_with_fallbackelse:returnllm|output_parser