Source code for langchain_community.document_compressors.dashscope_rerank
from __future__ import annotations
from copy import deepcopy
from typing import Any, Dict, List, Optional, Sequence, Union
from langchain_core.callbacks.base import Callbacks
from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.utils import get_from_dict_or_env
[docs]class DashScopeRerank(BaseDocumentCompressor):
"""Document compressor that uses `DashScope Rerank API`."""
client: Any = None
"""DashScope client to use for compressing documents."""
model: Optional[str] = None
"""Model to use for reranking."""
top_n: Optional[int] = 3
"""Number of documents to return."""
dashscope_api_key: Optional[str] = Field(None, alias="api_key")
"""DashScope API key. Must be specified directly or via environment variable
DASHSCOPE_API_KEY."""
class Config:
allow_population_by_field_name = True
arbitrary_types_allowed = True
extra = "forbid"
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
if not values.get("client"):
try:
import dashscope
except ImportError:
raise ImportError(
"Could not import dashscope python package. "
"Please install it with `pip install dashscope`."
)
values["client"] = dashscope.TextReRank
values["dashscope_api_key"] = get_from_dict_or_env(
values, "dashscope_api_key", "DASHSCOPE_API_KEY"
)
values["model"] = dashscope.TextReRank.Models.gte_rerank
return values
[docs] def rerank(
self,
documents: Sequence[Union[str, Document, dict]],
query: str,
*,
top_n: Optional[int] = -1,
) -> List[Dict[str, Any]]:
"""Returns an ordered list of documents ordered by their relevance to the provided query.
Args:
query: The query to use for reranking.
documents: A sequence of documents to rerank.
top_n : The number of results to return. If None returns all results.
Defaults to self.top_n.
""" # noqa: E501
if len(documents) == 0: # to avoid empty api call
return []
docs = [
doc.page_content if isinstance(doc, Document) else doc for doc in documents
]
top_n = top_n if (top_n is None or top_n > 0) else self.top_n
results = self.client.call(
model=self.model,
query=query,
documents=docs,
top_n=top_n,
return_documents=False,
api_key=self.dashscope_api_key,
)
result_dicts = []
for res in results.output.results:
result_dicts.append(
{"index": res.index, "relevance_score": res.relevance_score}
)
return result_dicts
[docs] def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""
Compress documents using DashScope's rerank API.
Args:
documents: A sequence of documents to compress.
query: The query to use for compressing the documents.
callbacks: Callbacks to run during the compression process.
Returns:
A sequence of compressed documents.
"""
compressed = []
for res in self.rerank(documents, query):
doc = documents[res["index"]]
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
doc_copy.metadata["relevance_score"] = res["relevance_score"]
compressed.append(doc_copy)
return compressed