import csv
from io import TextIOWrapper
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Sequence, Union
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
from langchain_community.document_loaders.helpers import detect_file_encodings
from langchain_community.document_loaders.unstructured import (
UnstructuredFileLoader,
validate_unstructured_version,
)
[docs]class CSVLoader(BaseLoader):
"""Load a `CSV` file into a list of Documents.
Each document represents one row of the CSV file. Every row is converted
into a key/value pair and outputted to a new line in the document's
page_content.
The source for each document loaded from csv is set to the value of the
`file_path` argument for all documents by default.
You can override this by setting the `source_column` argument to the
name of a column in the CSV file.
The source of each document will then be set to the value of the column
with the name specified in `source_column`.
Output Example:
.. code-block:: txt
column1: value1
column2: value2
column3: value3
Instantiate:
.. code-block:: python
from langchain_community.document_loaders import CSVLoader
loader = CSVLoader(file_path='./hw_200.csv',
csv_args={
'delimiter': ',',
'quotechar': '"',
'fieldnames': ['Index', 'Height', 'Weight']
})
Load:
.. code-block:: python
docs = loader.load()
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
Index: Index
Height: Height(Inches)"
Weight: "Weight(Pounds)"
{'source': './hw_200.csv', 'row': 0}
Async load:
.. code-block:: python
docs = await loader.aload()
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
Index: Index
Height: Height(Inches)"
Weight: "Weight(Pounds)"
{'source': './hw_200.csv', 'row': 0}
Lazy load:
.. code-block:: python
docs = []
docs_lazy = loader.lazy_load()
# async variant:
# docs_lazy = await loader.alazy_load()
for doc in docs_lazy:
docs.append(doc)
print(docs[0].page_content[:100])
print(docs[0].metadata)
.. code-block:: python
Index: Index
Height: Height(Inches)"
Weight: "Weight(Pounds)"
{'source': './hw_200.csv', 'row': 0}
"""
[docs] def __init__(
self,
file_path: Union[str, Path],
source_column: Optional[str] = None,
metadata_columns: Sequence[str] = (),
csv_args: Optional[Dict] = None,
encoding: Optional[str] = None,
autodetect_encoding: bool = False,
*,
content_columns: Sequence[str] = (),
):
"""
Args:
file_path: The path to the CSV file.
source_column: The name of the column in the CSV file to use as the source.
Optional. Defaults to None.
metadata_columns: A sequence of column names to use as metadata. Optional.
csv_args: A dictionary of arguments to pass to the csv.DictReader.
Optional. Defaults to None.
encoding: The encoding of the CSV file. Optional. Defaults to None.
autodetect_encoding: Whether to try to autodetect the file encoding.
content_columns: A sequence of column names to use for the document content.
If not present, use all columns that are not part of the metadata.
"""
self.file_path = file_path
self.source_column = source_column
self.metadata_columns = metadata_columns
self.encoding = encoding
self.csv_args = csv_args or {}
self.autodetect_encoding = autodetect_encoding
self.content_columns = content_columns
[docs] def lazy_load(self) -> Iterator[Document]:
try:
with open(self.file_path, newline="", encoding=self.encoding) as csvfile:
yield from self.__read_file(csvfile)
except UnicodeDecodeError as e:
if self.autodetect_encoding:
detected_encodings = detect_file_encodings(self.file_path)
for encoding in detected_encodings:
try:
with open(
self.file_path, newline="", encoding=encoding.encoding
) as csvfile:
yield from self.__read_file(csvfile)
break
except UnicodeDecodeError:
continue
else:
raise RuntimeError(f"Error loading {self.file_path}") from e
except Exception as e:
raise RuntimeError(f"Error loading {self.file_path}") from e
def __read_file(self, csvfile: TextIOWrapper) -> Iterator[Document]:
csv_reader = csv.DictReader(csvfile, **self.csv_args)
for i, row in enumerate(csv_reader):
try:
source = (
row[self.source_column]
if self.source_column is not None
else str(self.file_path)
)
except KeyError:
raise ValueError(
f"Source column '{self.source_column}' not found in CSV file."
)
content = "\n".join(
f"""{k.strip() if k is not None else k}: {v.strip()
if isinstance(v, str) else ','.join(map(str.strip, v))
if isinstance(v, list) else v}"""
for k, v in row.items()
if (
k in self.content_columns
if self.content_columns
else k not in self.metadata_columns
)
)
metadata = {"source": source, "row": i}
for col in self.metadata_columns:
try:
metadata[col] = row[col]
except KeyError:
raise ValueError(f"Metadata column '{col}' not found in CSV file.")
yield Document(page_content=content, metadata=metadata)
[docs]class UnstructuredCSVLoader(UnstructuredFileLoader):
"""Load `CSV` files using `Unstructured`.
Like other
Unstructured loaders, UnstructuredCSVLoader can be used in both
"single" and "elements" mode. If you use the loader in "elements"
mode, the CSV file will be a single Unstructured Table element.
If you use the loader in "elements" mode, an HTML representation
of the table will be available in the "text_as_html" key in the
document metadata.
Examples
--------
from langchain_community.document_loaders.csv_loader import UnstructuredCSVLoader
loader = UnstructuredCSVLoader("stanley-cups.csv", mode="elements")
docs = loader.load()
"""
[docs] def __init__(
self, file_path: str, mode: str = "single", **unstructured_kwargs: Any
):
"""
Args:
file_path: The path to the CSV file.
mode: The mode to use when loading the CSV file.
Optional. Defaults to "single".
**unstructured_kwargs: Keyword arguments to pass to unstructured.
"""
validate_unstructured_version(min_unstructured_version="0.6.8")
super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs)
def _get_elements(self) -> List:
from unstructured.partition.csv import partition_csv
return partition_csv(filename=self.file_path, **self.unstructured_kwargs)