Source code for langchain_community.document_loaders.hugging_face_model
from typing import Iterator, List, Optional
import requests
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
[docs]class HuggingFaceModelLoader(BaseLoader):
"""
Load model information from `Hugging Face Hub`, including README content.
This loader interfaces with the Hugging Face Models API to fetch and load
model metadata and README files.
The API allows you to search and filter models based on specific criteria
such as model tags, authors, and more.
API URL: https://huggingface.co/api/models
DOC URL: https://huggingface.co/docs/hub/en/api
Examples:
.. code-block:: python
from langchain_community.document_loaders import HuggingFaceModelLoader
# Initialize the loader with search criteria
loader = HuggingFaceModelLoader(search="bert", limit=10)
# Load models
documents = loader.load()
# Iterate through the fetched documents
for doc in documents:
print(doc.page_content) # README content of the model
print(doc.metadata) # Metadata of the model
"""
BASE_URL: str = "https://huggingface.co/api/models"
README_BASE_URL: str = "https://huggingface.co/{model_id}/raw/main/README.md"
[docs] def __init__(
self,
*,
search: Optional[str] = None,
author: Optional[str] = None,
filter: Optional[str] = None,
sort: Optional[str] = None,
direction: Optional[str] = None,
limit: Optional[int] = 3,
full: Optional[bool] = None,
config: Optional[bool] = None,
):
"""Initialize the HuggingFaceModelLoader.
Args:
search: Filter based on substrings for repos and their usernames.
author: Filter models by an author or organization.
filter: Filter based on tags.
sort: Property to use when sorting.
direction: Direction in which to sort.
limit: Limit the number of models fetched.
full: Whether to fetch most model data.
config: Whether to also fetch the repo config.
"""
self.params = {
"search": search,
"author": author,
"filter": filter,
"sort": sort,
"direction": direction,
"limit": limit,
"full": full,
"config": config,
}
[docs] def fetch_models(self) -> List[dict]:
"""Fetch model information from Hugging Face Hub."""
response = requests.get(
self.BASE_URL,
params={k: v for k, v in self.params.items() if v is not None},
)
response.raise_for_status()
return response.json()
[docs] def fetch_readme_content(self, model_id: str) -> str:
"""Fetch the README content for a given model."""
readme_url = self.README_BASE_URL.format(model_id=model_id)
try:
response = requests.get(readme_url)
response.raise_for_status()
return response.text
except requests.RequestException:
return "README not available for this model."
[docs] def lazy_load(self) -> Iterator[Document]:
"""Load model information lazily, including README content."""
models = self.fetch_models()
for model in models:
model_id = model.get("modelId", "")
readme_content = self.fetch_readme_content(model_id)
yield Document(
page_content=readme_content,
metadata=model,
)