Source code for langchain_community.document_loaders.sql_database
from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Union
from sqlalchemy.engine import RowMapping
from sqlalchemy.sql.expression import Select
from langchain_community.docstore.document import Document
from langchain_community.document_loaders.base import BaseLoader
from langchain_community.utilities.sql_database import SQLDatabase
[docs]class SQLDatabaseLoader(BaseLoader):
"""
Load documents by querying database tables supported by SQLAlchemy.
For talking to the database, the document loader uses the `SQLDatabase`
utility from the LangChain integration toolkit.
Each document represents one row of the result.
"""
[docs] def __init__(
self,
query: Union[str, Select],
db: SQLDatabase,
*,
parameters: Optional[Dict[str, Any]] = None,
page_content_mapper: Optional[Callable[..., str]] = None,
metadata_mapper: Optional[Callable[..., Dict[str, Any]]] = None,
source_columns: Optional[Sequence[str]] = None,
include_rownum_into_metadata: bool = False,
include_query_into_metadata: bool = False,
):
"""
Args:
query: The query to execute.
db: A LangChain `SQLDatabase`, wrapping an SQLAlchemy engine.
sqlalchemy_kwargs: More keyword arguments for SQLAlchemy's `create_engine`.
parameters: Optional. Parameters to pass to the query.
page_content_mapper: Optional. Function to convert a row into a string
to use as the `page_content` of the document. By default, the loader
serializes the whole row into a string, including all columns.
metadata_mapper: Optional. Function to convert a row into a dictionary
to use as the `metadata` of the document. By default, no columns are
selected into the metadata dictionary.
source_columns: Optional. The names of the columns to use as the `source`
within the metadata dictionary.
include_rownum_into_metadata: Optional. Whether to include the row number
into the metadata dictionary. Default: False.
include_query_into_metadata: Optional. Whether to include the query
expression into the metadata dictionary. Default: False.
"""
self.query = query
self.db: SQLDatabase = db
self.parameters = parameters or {}
self.page_content_mapper = (
page_content_mapper or self.page_content_default_mapper
)
self.metadata_mapper = metadata_mapper or self.metadata_default_mapper
self.source_columns = source_columns
self.include_rownum_into_metadata = include_rownum_into_metadata
self.include_query_into_metadata = include_query_into_metadata
[docs] def lazy_load(self) -> Iterator[Document]:
try:
import sqlalchemy as sa
except ImportError:
raise ImportError(
"Could not import sqlalchemy python package. "
"Please install it with `pip install sqlalchemy`."
)
# Querying in `cursor` fetch mode will return an SQLAlchemy `Result` instance.
result: sa.Result[Any]
# Invoke the database query.
if isinstance(self.query, sa.SelectBase):
result = self.db._execute( # type: ignore[assignment]
self.query, fetch="cursor", parameters=self.parameters
)
query_sql = str(self.query.compile(bind=self.db._engine))
elif isinstance(self.query, str):
result = self.db._execute( # type: ignore[assignment]
sa.text(self.query), fetch="cursor", parameters=self.parameters
)
query_sql = self.query
else:
raise TypeError(f"Unable to process query of unknown type: {self.query}")
# Iterate database result rows and generate list of documents.
for i, row in enumerate(result.mappings()):
page_content = self.page_content_mapper(row)
metadata = self.metadata_mapper(row)
if self.include_rownum_into_metadata:
metadata["row"] = i
if self.include_query_into_metadata:
metadata["query"] = query_sql
source_values = []
for column, value in row.items():
if self.source_columns and column in self.source_columns:
source_values.append(value)
if source_values:
metadata["source"] = ",".join(source_values)
yield Document(page_content=page_content, metadata=metadata)
[docs] @staticmethod
def page_content_default_mapper(
row: RowMapping, column_names: Optional[List[str]] = None
) -> str:
"""
A reasonable default function to convert a record into a "page content" string.
"""
if column_names is None:
column_names = list(row.keys())
return "\n".join(
f"{column}: {value}"
for column, value in row.items()
if column in column_names
)