from __future__ import annotations
import logging
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
logger = logging.getLogger(__name__)
[docs]class QianfanEmbeddingsEndpoint(BaseModel, Embeddings):
"""Baidu Qianfan Embeddings embedding models.
Setup:
To use, you should have the ``qianfan`` python package installed, and set
environment variables ``QIANFAN_AK``, ``QIANFAN_SK``.
.. code-block:: bash
pip install qianfan
export QIANFAN_AK="your-api-key"
export QIANFAN_SK="your-secret_key"
Instantiate:
.. code-block:: python
from langchain_community.embeddings import QianfanEmbeddingsEndpoint
embeddings = QianfanEmbeddingsEndpoint()
Embed:
.. code-block:: python
# embed the documents
vectors = embeddings.embed_documents([text1, text2, ...])
# embed the query
vectors = embeddings.embed_query(text)
# embed the documents with async
vectors = await embeddings.aembed_documents([text1, text2, ...])
# embed the query with async
vectors = await embeddings.aembed_query(text)
""" # noqa: E501
qianfan_ak: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Qianfan application apikey"""
qianfan_sk: Optional[SecretStr] = Field(default=None, alias="secret_key")
"""Qianfan application secretkey"""
chunk_size: int = 16
"""Chunk size when multiple texts are input"""
model: Optional[str] = Field(default=None)
"""Model name
you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
for now, we support Embedding-V1 and
- Embedding-V1 ๏ผ้ป่ฎคๆจกๅ๏ผ
- bge-large-en
- bge-large-zh
preset models are mapping to an endpoint.
`model` will be ignored if `endpoint` is set
"""
endpoint: str = ""
"""Endpoint of the Qianfan Embedding, required if custom model used."""
client: Any
"""Qianfan client"""
init_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""init kwargs for qianfan client init, such as `query_per_second` which is
associated with qianfan resource object to limit QPS"""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""extra params for model invoke using with `do`."""
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""
Validate whether qianfan_ak and qianfan_sk in the environment variables or
configuration file are available or not.
init qianfan embedding client with `ak`, `sk`, `model`, `endpoint`
Args:
values: a dictionary containing configuration information, must include the
fields of qianfan_ak and qianfan_sk
Returns:
a dictionary containing configuration information. If qianfan_ak and
qianfan_sk are not provided in the environment variables or configuration
file,the original values will be returned; otherwise, values containing
qianfan_ak and qianfan_sk will be returned.
Raises:
ValueError: qianfan package not found, please install it with `pip install
qianfan`
"""
values["qianfan_ak"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"qianfan_ak",
"QIANFAN_AK",
default="",
)
)
values["qianfan_sk"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"qianfan_sk",
"QIANFAN_SK",
default="",
)
)
try:
import qianfan
params = {
**values.get("init_kwargs", {}),
"model": values["model"],
}
if values["qianfan_ak"].get_secret_value() != "":
params["ak"] = values["qianfan_ak"].get_secret_value()
if values["qianfan_sk"].get_secret_value() != "":
params["sk"] = values["qianfan_sk"].get_secret_value()
if values["endpoint"] is not None and values["endpoint"] != "":
params["endpoint"] = values["endpoint"]
values["client"] = qianfan.Embedding(**params)
except ImportError:
raise ImportError(
"qianfan package not found, please install it with "
"`pip install qianfan`"
)
return values
[docs] def embed_query(self, text: str) -> List[float]:
resp = self.embed_documents([text])
return resp[0]
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""
Embeds a list of text documents using the AutoVOT algorithm.
Args:
texts (List[str]): A list of text documents to embed.
Returns:
List[List[float]]: A list of embeddings for each document in the input list.
Each embedding is represented as a list of float values.
"""
text_in_chunks = [
texts[i : i + self.chunk_size]
for i in range(0, len(texts), self.chunk_size)
]
lst = []
for chunk in text_in_chunks:
resp = self.client.do(texts=chunk, **self.model_kwargs)
lst.extend([res["embedding"] for res in resp["data"]])
return lst
[docs] async def aembed_query(self, text: str) -> List[float]:
embeddings = await self.aembed_documents([text])
return embeddings[0]
[docs] async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
text_in_chunks = [
texts[i : i + self.chunk_size]
for i in range(0, len(texts), self.chunk_size)
]
lst = []
for chunk in text_in_chunks:
resp = await self.client.ado(texts=chunk, **self.model_kwargs)
for res in resp["data"]:
lst.extend([res["embedding"]])
return lst