Source code for langchain_community.embeddings.clarifai
import logging
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
logger = logging.getLogger(__name__)
[docs]class ClarifaiEmbeddings(BaseModel, Embeddings):
"""Clarifai embedding models.
To use, you should have the ``clarifai`` python package installed, and the
environment variable ``CLARIFAI_PAT`` set with your personal access token or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.embeddings import ClarifaiEmbeddings
clarifai = ClarifaiEmbeddings(user_id=USER_ID,
app_id=APP_ID,
model_id=MODEL_ID)
(or)
Example_URL = "https://clarifai.com/clarifai/main/models/BAAI-bge-base-en-v15"
clarifai = ClarifaiEmbeddings(model_url=EXAMPLE_URL)
"""
model_url: Optional[str] = None
"""Model url to use."""
model_id: Optional[str] = None
"""Model id to use."""
model_version_id: Optional[str] = None
"""Model version id to use."""
app_id: Optional[str] = None
"""Clarifai application id to use."""
user_id: Optional[str] = None
"""Clarifai user id to use."""
pat: Optional[str] = Field(default=None, exclude=True)
"""Clarifai personal access token to use."""
token: Optional[str] = Field(default=None, exclude=True)
"""Clarifai session token to use."""
model: Any = Field(default=None, exclude=True) #: :meta private:
api_base: str = "https://api.clarifai.com"
class Config:
extra = "forbid"
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that we have all required info to access Clarifai
platform and python package exists in environment."""
try:
from clarifai.client.model import Model
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
user_id = values.get("user_id")
app_id = values.get("app_id")
model_id = values.get("model_id")
model_version_id = values.get("model_version_id")
model_url = values.get("model_url")
api_base = values.get("api_base")
pat = values.get("pat")
token = values.get("token")
values["model"] = Model(
url=model_url,
app_id=app_id,
user_id=user_id,
model_version=dict(id=model_version_id),
pat=pat,
token=token,
model_id=model_id,
base_url=api_base,
)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Clarifai's embedding models.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
from clarifai.client.input import Inputs
input_obj = Inputs.from_auth_helper(self.model.auth_helper)
batch_size = 32
embeddings = []
try:
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
input_batch = [
input_obj.get_text_input(input_id=str(id), raw_text=inp)
for id, inp in enumerate(batch)
]
predict_response = self.model.predict(input_batch)
embeddings.extend(
[
list(output.data.embeddings[0].vector)
for output in predict_response.outputs
]
)
except Exception as e:
logger.error(f"Predict failed, exception: {e}")
return embeddings
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Clarifai's embedding models.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
try:
predict_response = self.model.predict_by_bytes(
bytes(text, "utf-8"), input_type="text"
)
embeddings = [
list(op.data.embeddings[0].vector) for op in predict_response.outputs
]
except Exception as e:
logger.error(f"Predict failed, exception: {e}")
return embeddings[0]