[docs]@deprecated("0.1.11",alternative="Use class in langchain-elasticsearch package",pending=True)classElasticsearchEmbeddings(Embeddings):"""Elasticsearch embedding models. This class provides an interface to generate embeddings using a model deployed in an Elasticsearch cluster. It requires an Elasticsearch connection object and the model_id of the model deployed in the cluster. In Elasticsearch you need to have an embedding model loaded and deployed. - https://www.elastic.co/guide/en/elasticsearch/reference/current/infer-trained-model.html - https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-deploy-models.html """
[docs]def__init__(self,client:MlClient,model_id:str,*,input_field:str="text_field",):""" Initialize the ElasticsearchEmbeddings instance. Args: client (MlClient): An Elasticsearch ML client object. model_id (str): The model_id of the model deployed in the Elasticsearch cluster. input_field (str): The name of the key for the input text field in the document. Defaults to 'text_field'. """self.client=clientself.model_id=model_idself.input_field=input_field
[docs]@classmethoddeffrom_credentials(cls,model_id:str,*,es_cloud_id:Optional[str]=None,es_user:Optional[str]=None,es_password:Optional[str]=None,input_field:str="text_field",)->ElasticsearchEmbeddings:"""Instantiate embeddings from Elasticsearch credentials. Args: model_id (str): The model_id of the model deployed in the Elasticsearch cluster. input_field (str): The name of the key for the input text field in the document. Defaults to 'text_field'. es_cloud_id: (str, optional): The Elasticsearch cloud ID to connect to. es_user: (str, optional): Elasticsearch username. es_password: (str, optional): Elasticsearch password. Example: .. code-block:: python from langchain_community.embeddings import ElasticsearchEmbeddings # Define the model ID and input field name (if different from default) model_id = "your_model_id" # Optional, only if different from 'text_field' input_field = "your_input_field" # Credentials can be passed in two ways. Either set the env vars # ES_CLOUD_ID, ES_USER, ES_PASSWORD and they will be automatically # pulled in, or pass them in directly as kwargs. embeddings = ElasticsearchEmbeddings.from_credentials( model_id, input_field=input_field, # es_cloud_id="foo", # es_user="bar", # es_password="baz", ) documents = [ "This is an example document.", "Another example document to generate embeddings for.", ] embeddings_generator.embed_documents(documents) """try:fromelasticsearchimportElasticsearchfromelasticsearch.clientimportMlClientexceptImportError:raiseImportError("elasticsearch package not found, please install with 'pip install ""elasticsearch'")es_cloud_id=es_cloud_idorget_from_env("es_cloud_id","ES_CLOUD_ID")es_user=es_userorget_from_env("es_user","ES_USER")es_password=es_passwordorget_from_env("es_password","ES_PASSWORD")# Connect to Elasticsearches_connection=Elasticsearch(cloud_id=es_cloud_id,basic_auth=(es_user,es_password))client=MlClient(es_connection)returncls(client,model_id,input_field=input_field)
[docs]@classmethoddeffrom_es_connection(cls,model_id:str,es_connection:Elasticsearch,input_field:str="text_field",)->ElasticsearchEmbeddings:""" Instantiate embeddings from an existing Elasticsearch connection. This method provides a way to create an instance of the ElasticsearchEmbeddings class using an existing Elasticsearch connection. The connection object is used to create an MlClient, which is then used to initialize the ElasticsearchEmbeddings instance. Args: model_id (str): The model_id of the model deployed in the Elasticsearch cluster. es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch connection object. input_field (str, optional): The name of the key for the input text field in the document. Defaults to 'text_field'. Returns: ElasticsearchEmbeddings: An instance of the ElasticsearchEmbeddings class. Example: .. code-block:: python from elasticsearch import Elasticsearch from langchain_community.embeddings import ElasticsearchEmbeddings # Define the model ID and input field name (if different from default) model_id = "your_model_id" # Optional, only if different from 'text_field' input_field = "your_input_field" # Create Elasticsearch connection es_connection = Elasticsearch( hosts=["localhost:9200"], http_auth=("user", "password") ) # Instantiate ElasticsearchEmbeddings using the existing connection embeddings = ElasticsearchEmbeddings.from_es_connection( model_id, es_connection, input_field=input_field, ) documents = [ "This is an example document.", "Another example document to generate embeddings for.", ] embeddings_generator.embed_documents(documents) """# Importing MlClient from elasticsearch.client within the method to# avoid unnecessary import if the method is not usedfromelasticsearch.clientimportMlClient# Create an MlClient from the given Elasticsearch connectionclient=MlClient(es_connection)# Return a new instance of the ElasticsearchEmbeddings class with# the MlClient, model_id, and input_fieldreturncls(client,model_id,input_field=input_field)
def_embedding_func(self,texts:List[str])->List[List[float]]:""" Generate embeddings for the given texts using the Elasticsearch model. Args: texts (List[str]): A list of text strings to generate embeddings for. Returns: List[List[float]]: A list of embeddings, one for each text in the input list. """response=self.client.infer_trained_model(model_id=self.model_id,docs=[{self.input_field:text}fortextintexts])embeddings=[doc["predicted_value"]fordocinresponse["inference_results"]]returnembeddings
[docs]defembed_documents(self,texts:List[str])->List[List[float]]:""" Generate embeddings for a list of documents. Args: texts (List[str]): A list of document text strings to generate embeddings for. Returns: List[List[float]]: A list of embeddings, one for each document in the input list. """returnself._embedding_func(texts)
[docs]defembed_query(self,text:str)->List[float]:""" Generate an embedding for a single query text. Args: text (str): The query text to generate an embedding for. Returns: List[float]: The embedding for the input query text. """returnself._embedding_func([text])[0]