Source code for langchain_community.embeddings.ernie
import asyncio
import logging
import threading
from typing import Dict, List, Optional
import requests
from langchain_core._api.deprecation import deprecated
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables.config import run_in_executor
from langchain_core.utils import get_from_dict_or_env, pre_init
logger = logging.getLogger(__name__)
[docs]@deprecated(
since="0.0.13",
alternative="langchain_community.embeddings.QianfanEmbeddingsEndpoint",
)
class ErnieEmbeddings(BaseModel, Embeddings):
"""`Ernie Embeddings V1` embedding models."""
ernie_api_base: Optional[str] = None
ernie_client_id: Optional[str] = None
ernie_client_secret: Optional[str] = None
access_token: Optional[str] = None
chunk_size: int = 16
model_name: str = "ErnieBot-Embedding-V1"
_lock = threading.Lock()
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
values["ernie_api_base"] = get_from_dict_or_env(
values, "ernie_api_base", "ERNIE_API_BASE", "https://aip.baidubce.com"
)
values["ernie_client_id"] = get_from_dict_or_env(
values,
"ernie_client_id",
"ERNIE_CLIENT_ID",
)
values["ernie_client_secret"] = get_from_dict_or_env(
values,
"ernie_client_secret",
"ERNIE_CLIENT_SECRET",
)
return values
def _embedding(self, json: object) -> dict:
base_url = (
f"{self.ernie_api_base}/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings"
)
resp = requests.post(
f"{base_url}/embedding-v1",
headers={
"Content-Type": "application/json",
},
params={"access_token": self.access_token},
json=json,
)
return resp.json()
def _refresh_access_token_with_lock(self) -> None:
with self._lock:
logger.debug("Refreshing access token")
base_url: str = f"{self.ernie_api_base}/oauth/2.0/token"
resp = requests.post(
base_url,
headers={
"Content-Type": "application/json",
"Accept": "application/json",
},
params={
"grant_type": "client_credentials",
"client_id": self.ernie_client_id,
"client_secret": self.ernie_client_secret,
},
)
self.access_token = str(resp.json().get("access_token"))
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs.
Args:
texts: The list of texts to embed
Returns:
List[List[float]]: List of embeddings, one for each text.
"""
if not self.access_token:
self._refresh_access_token_with_lock()
text_in_chunks = [
texts[i : i + self.chunk_size]
for i in range(0, len(texts), self.chunk_size)
]
lst = []
for chunk in text_in_chunks:
resp = self._embedding({"input": [text for text in chunk]})
if resp.get("error_code"):
if resp.get("error_code") == 111:
self._refresh_access_token_with_lock()
resp = self._embedding({"input": [text for text in chunk]})
else:
raise ValueError(f"Error from Ernie: {resp}")
lst.extend([i["embedding"] for i in resp["data"]])
return lst
[docs] def embed_query(self, text: str) -> List[float]:
"""Embed query text.
Args:
text: The text to embed.
Returns:
List[float]: Embeddings for the text.
"""
if not self.access_token:
self._refresh_access_token_with_lock()
resp = self._embedding({"input": [text]})
if resp.get("error_code"):
if resp.get("error_code") == 111:
self._refresh_access_token_with_lock()
resp = self._embedding({"input": [text]})
else:
raise ValueError(f"Error from Ernie: {resp}")
return resp["data"][0]["embedding"]
[docs] async def aembed_query(self, text: str) -> List[float]:
"""Asynchronous Embed query text.
Args:
text: The text to embed.
Returns:
List[float]: Embeddings for the text.
"""
return await run_in_executor(None, self.embed_query, text)
[docs] async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Asynchronous Embed search docs.
Args:
texts: The list of texts to embed
Returns:
List[List[float]]: List of embeddings, one for each text.
"""
result = await asyncio.gather(*[self.aembed_query(text) for text in texts])
return list(result)