Source code for langchain_community.embeddings.google_palm

from __future__ import annotations

import logging
from typing import Any, Callable, Dict, List, Optional

from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.utils import get_from_dict_or_env, pre_init
from tenacity import (
    before_sleep_log,
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

logger = logging.getLogger(__name__)


def _create_retry_decorator() -> Callable[[Any], Any]:
    """Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
    import google.api_core.exceptions

    multiplier = 2
    min_seconds = 1
    max_seconds = 60
    max_retries = 10

    return retry(
        reraise=True,
        stop=stop_after_attempt(max_retries),
        wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
        retry=(
            retry_if_exception_type(google.api_core.exceptions.ResourceExhausted)
            | retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable)
            | retry_if_exception_type(google.api_core.exceptions.GoogleAPIError)
        ),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )


[docs]def embed_with_retry( embeddings: GooglePalmEmbeddings, *args: Any, **kwargs: Any ) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator() @retry_decorator def _embed_with_retry(*args: Any, **kwargs: Any) -> Any: return embeddings.client.generate_embeddings(*args, **kwargs) return _embed_with_retry(*args, **kwargs)
[docs]class GooglePalmEmbeddings(BaseModel, Embeddings): """Google's PaLM Embeddings APIs.""" client: Any google_api_key: Optional[str] model_name: str = "models/embedding-gecko-001" """Model name to use.""" show_progress_bar: bool = False """Whether to show a tqdm progress bar. Must have `tqdm` installed.""" @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate api key, python package exists.""" google_api_key = get_from_dict_or_env( values, "google_api_key", "GOOGLE_API_KEY" ) try: import google.generativeai as genai genai.configure(api_key=google_api_key) except ImportError: raise ImportError("Could not import google.generativeai python package.") values["client"] = genai return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: if self.show_progress_bar: try: from tqdm import tqdm iter_ = tqdm(texts, desc="GooglePalmEmbeddings") except ImportError: logger.warning( "Unable to show progress bar because tqdm could not be imported. " "Please install with `pip install tqdm`." ) iter_ = texts else: iter_ = texts return [self.embed_query(text) for text in iter_]
[docs] def embed_query(self, text: str) -> List[float]: """Embed query text.""" embedding = embed_with_retry(self, self.model_name, text) return embedding["embedding"]