Source code for langchain_community.embeddings.nemo

from __future__ import annotations

import asyncio
import json
from typing import Any, Dict, List, Optional

import aiohttp
import requests
from langchain_core._api.deprecation import deprecated
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.utils import pre_init


[docs]def is_endpoint_live(url: str, headers: Optional[dict], payload: Any) -> bool: """ Check if an endpoint is live by sending a GET request to the specified URL. Args: url (str): The URL of the endpoint to check. Returns: bool: True if the endpoint is live (status code 200), False otherwise. Raises: Exception: If the endpoint returns a non-successful status code or if there is an error querying the endpoint. """ try: response = requests.request("POST", url, headers=headers, data=payload) # Check if the status code is 200 (OK) if response.status_code == 200: return True else: # Raise an exception if the status code is not 200 raise Exception( f"Endpoint returned a non-successful status code: " f"{response.status_code}" ) except requests.exceptions.RequestException as e: # Handle any exceptions (e.g., connection errors) raise Exception(f"Error querying the endpoint: {e}")
[docs]@deprecated( since="0.0.37", removal="0.2.0", message=( "Directly instantiating a NeMoEmbeddings from langchain-community is " "deprecated. Please use langchain-nvidia-ai-endpoints NVIDIAEmbeddings " "interface." ), ) class NeMoEmbeddings(BaseModel, Embeddings): """NeMo embedding models.""" batch_size: int = 16 model: str = "NV-Embed-QA-003" api_endpoint_url: str = "http://localhost:8088/v1/embeddings" @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that the end point is alive using the values that are provided.""" url = values["api_endpoint_url"] model = values["model"] # Optional: A minimal test payload and headers required by the endpoint headers = {"Content-Type": "application/json"} payload = json.dumps( {"input": "Hello World", "model": model, "input_type": "query"} ) is_endpoint_live(url, headers, payload) return values async def _aembedding_func( self, session: Any, text: str, input_type: str ) -> List[float]: """Async call out to embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ headers = {"Content-Type": "application/json"} async with session.post( self.api_endpoint_url, json={"input": text, "model": self.model, "input_type": input_type}, headers=headers, ) as response: response.raise_for_status() answer = await response.text() answer = json.loads(answer) return answer["data"][0]["embedding"] def _embedding_func(self, text: str, input_type: str) -> List[float]: """Call out to Cohere's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ payload = json.dumps( {"input": text, "model": self.model, "input_type": input_type} ) headers = {"Content-Type": "application/json"} response = requests.request( "POST", self.api_endpoint_url, headers=headers, data=payload ) response_json = json.loads(response.text) embedding = response_json["data"][0]["embedding"] return embedding
[docs] def embed_documents(self, documents: List[str]) -> List[List[float]]: """Embed a list of document texts. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ return [self._embedding_func(text, input_type="passage") for text in documents]
[docs] def embed_query(self, text: str) -> List[float]: return self._embedding_func(text, input_type="query")
[docs] async def aembed_query(self, text: str) -> List[float]: """Call out to NeMo's embedding endpoint async for embedding query text. Args: text: The text to embed. Returns: Embedding for the text. """ async with aiohttp.ClientSession() as session: embedding = await self._aembedding_func(session, text, "passage") return embedding
[docs] async def aembed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to NeMo's embedding endpoint async for embedding search docs. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = [] async with aiohttp.ClientSession() as session: for batch in range(0, len(texts), self.batch_size): text_batch = texts[batch : batch + self.batch_size] for text in text_batch: # Create tasks for all texts in the batch tasks = [ self._aembedding_func(session, text, "passage") for text in text_batch ] # Run all tasks concurrently batch_results = await asyncio.gather(*tasks) # Extend the embeddings list with results from this batch embeddings.extend(batch_results) return embeddings