from enum import Enum
from typing import Any, Dict, Iterator, List, Mapping, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.utils import pre_init
CUSTOM_ENDPOINT_PREFIX = "ocid1.generativeaiendpoint"
[docs]class OCIAuthType(Enum):
"""OCI authentication types as enumerator."""
API_KEY = 1
SECURITY_TOKEN = 2
INSTANCE_PRINCIPAL = 3
RESOURCE_PRINCIPAL = 4
[docs]class OCIGenAIEmbeddings(BaseModel, Embeddings):
"""OCI embedding models.
To authenticate, the OCI client uses the methods described in
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm
The authentifcation method is passed through auth_type and should be one of:
API_KEY (default), SECURITY_TOKEN, INSTANCE_PRINCIPLE, RESOURCE_PRINCIPLE
Make sure you have the required policies (profile/roles) to
access the OCI Generative AI service. If a specific config profile is used,
you must pass the name of the profile (~/.oci/config) through auth_profile.
To use, you must provide the compartment id
along with the endpoint url, and model id
as named parameters to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import OCIGenAIEmbeddings
embeddings = OCIGenAIEmbeddings(
model_id="MY_EMBEDDING_MODEL",
service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com",
compartment_id="MY_OCID"
)
"""
client: Any #: :meta private:
service_models: Any #: :meta private:
auth_type: Optional[str] = "API_KEY"
"""Authentication type, could be
API_KEY,
SECURITY_TOKEN,
INSTANCE_PRINCIPLE,
RESOURCE_PRINCIPLE
If not specified, API_KEY will be used
"""
auth_profile: Optional[str] = "DEFAULT"
"""The name of the profile in ~/.oci/config
If not specified , DEFAULT will be used
"""
model_id: str = None # type: ignore[assignment]
"""Id of the model to call, e.g., cohere.embed-english-light-v2.0"""
model_kwargs: Optional[Dict] = None
"""Keyword arguments to pass to the model"""
service_endpoint: str = None # type: ignore[assignment]
"""service endpoint url"""
compartment_id: str = None # type: ignore[assignment]
"""OCID of compartment"""
truncate: Optional[str] = "END"
"""Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")"""
batch_size: int = 96
"""Batch size of OCI GenAI embedding requests. OCI GenAI may handle up to 96 texts
per request"""
class Config:
extra = "forbid"
@pre_init
def validate_environment(cls, values: Dict) -> Dict: # pylint: disable=no-self-argument
"""Validate that OCI config and python package exists in environment."""
# Skip creating new client if passed in constructor
if values["client"] is not None:
return values
try:
import oci
client_kwargs = {
"config": {},
"signer": None,
"service_endpoint": values["service_endpoint"],
"retry_strategy": oci.retry.DEFAULT_RETRY_STRATEGY,
"timeout": (10, 240), # default timeout config for OCI Gen AI service
}
if values["auth_type"] == OCIAuthType(1).name:
client_kwargs["config"] = oci.config.from_file(
profile_name=values["auth_profile"]
)
client_kwargs.pop("signer", None)
elif values["auth_type"] == OCIAuthType(2).name:
def make_security_token_signer(oci_config): # type: ignore[no-untyped-def]
pk = oci.signer.load_private_key_from_file(
oci_config.get("key_file"), None
)
with open(
oci_config.get("security_token_file"), encoding="utf-8"
) as f:
st_string = f.read()
return oci.auth.signers.SecurityTokenSigner(st_string, pk)
client_kwargs["config"] = oci.config.from_file(
profile_name=values["auth_profile"]
)
client_kwargs["signer"] = make_security_token_signer(
oci_config=client_kwargs["config"]
)
elif values["auth_type"] == OCIAuthType(3).name:
client_kwargs["signer"] = (
oci.auth.signers.InstancePrincipalsSecurityTokenSigner()
)
elif values["auth_type"] == OCIAuthType(4).name:
client_kwargs["signer"] = (
oci.auth.signers.get_resource_principals_signer()
)
else:
raise ValueError("Please provide valid value to auth_type")
values["client"] = oci.generative_ai_inference.GenerativeAiInferenceClient(
**client_kwargs
)
except ImportError as ex:
raise ImportError(
"Could not import oci python package. "
"Please make sure you have the oci package installed."
) from ex
except Exception as e:
raise ValueError(
"Could not authenticate with OCI client. "
"Please check if ~/.oci/config exists. "
"If INSTANCE_PRINCIPLE or RESOURCE_PRINCIPLE is used, "
"Please check the specified "
"auth_profile and auth_type are valid."
) from e
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"model_kwargs": _model_kwargs},
}
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to OCIGenAI's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
from oci.generative_ai_inference import models
if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX):
serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id)
else:
serving_mode = models.OnDemandServingMode(model_id=self.model_id)
embeddings = []
def split_texts() -> Iterator[List[str]]:
for i in range(0, len(texts), self.batch_size):
yield texts[i : i + self.batch_size]
for chunk in split_texts():
invocation_obj = models.EmbedTextDetails(
serving_mode=serving_mode,
compartment_id=self.compartment_id,
truncate=self.truncate,
inputs=chunk,
)
response = self.client.embed_text(invocation_obj)
embeddings.extend(response.data.embeddings)
return embeddings
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to OCIGenAI's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]