Source code for langchain_community.embeddings.oracleai

# Authors:
#   Harichandan Roy (hroy)
#   David Jiang (ddjiang)
#
# -----------------------------------------------------------------------------
# oracleai.py
# -----------------------------------------------------------------------------

from __future__ import annotations

import json
import logging
import traceback
from typing import TYPE_CHECKING, Any, Dict, List, Optional

from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel

if TYPE_CHECKING:
    from oracledb import Connection

logger = logging.getLogger(__name__)

"""OracleEmbeddings class"""


[docs]class OracleEmbeddings(BaseModel, Embeddings): """Get Embeddings""" """Oracle Connection""" conn: Any """Embedding Parameters""" params: Dict[str, Any] """Proxy""" proxy: Optional[str] = None def __init__(self, **kwargs: Any): super().__init__(**kwargs) class Config: extra = "forbid" """ 1 - user needs to have create procedure, create mining model, create any directory privilege. 2 - grant create procedure, create mining model, create any directory to <user>; """
[docs] @staticmethod def load_onnx_model( conn: Connection, dir: str, onnx_file: str, model_name: str ) -> None: """Load an ONNX model to Oracle Database. Args: conn: Oracle Connection, dir: Oracle Directory, onnx_file: ONNX file name, model_name: Name of the model. """ try: if conn is None or dir is None or onnx_file is None or model_name is None: raise Exception("Invalid input") cursor = conn.cursor() cursor.execute( """ begin dbms_data_mining.drop_model(model_name => :model, force => true); SYS.DBMS_VECTOR.load_onnx_model(:path, :filename, :model, json('{"function" : "embedding", "embeddingOutput" : "embedding", "input": {"input": ["DATA"]}}')); end;""", path=dir, filename=onnx_file, model=model_name, ) cursor.close() except Exception as ex: logger.info(f"An exception occurred :: {ex}") traceback.print_exc() cursor.close() raise
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using an OracleEmbeddings. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each input text. """ try: import oracledb except ImportError as e: raise ImportError( "Unable to import oracledb, please install with " "`pip install -U oracledb`." ) from e if texts is None: return None embeddings: List[List[float]] = [] try: # returns strings or bytes instead of a locator oracledb.defaults.fetch_lobs = False cursor = self.conn.cursor() if self.proxy: cursor.execute( "begin utl_http.set_proxy(:proxy); end;", proxy=self.proxy ) chunks = [] for i, text in enumerate(texts, start=1): chunk = {"chunk_id": i, "chunk_data": text} chunks.append(json.dumps(chunk)) vector_array_type = self.conn.gettype("SYS.VECTOR_ARRAY_T") inputs = vector_array_type.newobject(chunks) cursor.execute( "select t.* " + "from dbms_vector_chain.utl_to_embeddings(:content, " + "json(:params)) t", content=inputs, params=json.dumps(self.params), ) for row in cursor: if row is None: embeddings.append([]) else: rdata = json.loads(row[0]) # dereference string as array vec = json.loads(rdata["embed_vector"]) embeddings.append(vec) cursor.close() return embeddings except Exception as ex: logger.info(f"An exception occurred :: {ex}") traceback.print_exc() cursor.close() raise
[docs] def embed_query(self, text: str) -> List[float]: """Compute query embedding using an OracleEmbeddings. Args: text: The text to embed. Returns: Embedding for the text. """ return self.embed_documents([text])[0]
# uncomment the following code block to run the test """ # A sample unit test. import oracledb # get the Oracle connection conn = oracledb.connect( user="<user>", password="<password>", dsn="<hostname>/<service_name>", ) print("Oracle connection is established...") # params embedder_params = {"provider": "database", "model": "demo_model"} proxy = "" # instance embedder = OracleEmbeddings(conn=conn, params=embedder_params, proxy=proxy) docs = ["hello world!", "hi everyone!", "greetings!"] embeds = embedder.embed_documents(docs) print(f"Total Embeddings: {len(embeds)}") print(f"Embedding generated by OracleEmbeddings: {embeds[0]}\n") embed = embedder.embed_query("Hello World!") print(f"Embedding generated by OracleEmbeddings: {embed}") conn.close() print("Connection is closed.") """