Source code for langchain_community.embeddings.solar

from __future__ import annotations

import logging
from typing import Any, Callable, Dict, List, Optional

import requests
from langchain_core._api import deprecated
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, SecretStr
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
from tenacity import (
    before_sleep_log,
    retry,
    stop_after_attempt,
    wait_exponential,
)

logger = logging.getLogger(__name__)


def _create_retry_decorator() -> Callable[[Any], Any]:
    """Returns a tenacity retry decorator."""

    multiplier = 1
    min_seconds = 1
    max_seconds = 4
    max_retries = 6

    return retry(
        reraise=True,
        stop=stop_after_attempt(max_retries),
        wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )


[docs]def embed_with_retry(embeddings: SolarEmbeddings, *args: Any, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator() @retry_decorator def _embed_with_retry(*args: Any, **kwargs: Any) -> Any: return embeddings.embed(*args, **kwargs) return _embed_with_retry(*args, **kwargs)
[docs]@deprecated( since="0.0.34", removal="1.0", alternative_import="langchain_upstage.ChatUpstage" ) class SolarEmbeddings(BaseModel, Embeddings): """Solar's embedding service. To use, you should have the environment variable``SOLAR_API_KEY`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.embeddings import SolarEmbeddings embeddings = SolarEmbeddings() query_text = "This is a test query." query_result = embeddings.embed_query(query_text) document_text = "This is a test document." document_result = embeddings.embed_documents([document_text]) """ endpoint_url: str = "https://api.upstage.ai/v1/solar/embeddings" """Endpoint URL to use.""" model: str = "solar-1-mini-embedding-query" """Embeddings model name to use.""" solar_api_key: Optional[SecretStr] = None """API Key for Solar API.""" class Config: extra = "forbid" @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate api key exists in environment.""" solar_api_key = convert_to_secret_str( get_from_dict_or_env(values, "solar_api_key", "SOLAR_API_KEY") ) values["solar_api_key"] = solar_api_key return values
[docs] def embed( self, text: str, ) -> List[List[float]]: payload = { "model": self.model, "input": text, } # HTTP headers for authorization headers = { "Authorization": f"Bearer {self.solar_api_key.get_secret_value()}", # type: ignore[union-attr] "Content-Type": "application/json", } # send request response = requests.post(self.endpoint_url, headers=headers, json=payload) parsed_response = response.json() # check for errors if len(parsed_response["data"]) == 0: raise ValueError( f"Solar API returned an error: {parsed_response['base_resp']}" ) embedding = parsed_response["data"][0]["embedding"] return embedding
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a Solar embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = [embed_with_retry(self, text=text) for text in texts] return embeddings
[docs] def embed_query(self, text: str) -> List[float]: """Embed a query using a Solar embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ embedding = embed_with_retry(self, text=text) return embedding