Source code for langchain_community.graphs.networkx_graph

"""Networkx wrapper for graph operations."""

from __future__ import annotations

from typing import Any, List, NamedTuple, Optional, Tuple

KG_TRIPLE_DELIMITER = "<|>"


[docs]class KnowledgeTriple(NamedTuple): """Knowledge triple in the graph.""" subject: str predicate: str object_: str
[docs] @classmethod def from_string(cls, triple_string: str) -> "KnowledgeTriple": """Create a KnowledgeTriple from a string.""" subject, predicate, object_ = triple_string.strip().split(", ") subject = subject[1:] object_ = object_[:-1] return cls(subject, predicate, object_)
[docs]def parse_triples(knowledge_str: str) -> List[KnowledgeTriple]: """Parse knowledge triples from the knowledge string.""" knowledge_str = knowledge_str.strip() if not knowledge_str or knowledge_str == "NONE": return [] triple_strs = knowledge_str.split(KG_TRIPLE_DELIMITER) results = [] for triple_str in triple_strs: try: kg_triple = KnowledgeTriple.from_string(triple_str) except ValueError: continue results.append(kg_triple) return results
[docs]def get_entities(entity_str: str) -> List[str]: """Extract entities from entity string.""" if entity_str.strip() == "NONE": return [] else: return [w.strip() for w in entity_str.split(",")]
[docs]class NetworkxEntityGraph: """Networkx wrapper for entity graph operations. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """
[docs] def __init__(self, graph: Optional[Any] = None) -> None: """Create a new graph.""" try: import networkx as nx except ImportError: raise ImportError( "Could not import networkx python package. " "Please install it with `pip install networkx`." ) if graph is not None: if not isinstance(graph, nx.DiGraph): raise ValueError("Passed in graph is not of correct shape") self._graph = graph else: self._graph = nx.DiGraph()
[docs] @classmethod def from_gml(cls, gml_path: str) -> NetworkxEntityGraph: try: import networkx as nx except ImportError: raise ImportError( "Could not import networkx python package. " "Please install it with `pip install networkx`." ) graph = nx.read_gml(gml_path) return cls(graph)
[docs] def add_triple(self, knowledge_triple: KnowledgeTriple) -> None: """Add a triple to the graph.""" # Creates nodes if they don't exist # Overwrites existing edges if not self._graph.has_node(knowledge_triple.subject): self._graph.add_node(knowledge_triple.subject) if not self._graph.has_node(knowledge_triple.object_): self._graph.add_node(knowledge_triple.object_) self._graph.add_edge( knowledge_triple.subject, knowledge_triple.object_, relation=knowledge_triple.predicate, )
[docs] def delete_triple(self, knowledge_triple: KnowledgeTriple) -> None: """Delete a triple from the graph.""" if self._graph.has_edge(knowledge_triple.subject, knowledge_triple.object_): self._graph.remove_edge(knowledge_triple.subject, knowledge_triple.object_)
[docs] def get_triples(self) -> List[Tuple[str, str, str]]: """Get all triples in the graph.""" return [(u, v, d["relation"]) for u, v, d in self._graph.edges(data=True)]
[docs] def get_entity_knowledge(self, entity: str, depth: int = 1) -> List[str]: """Get information about an entity.""" import networkx as nx # TODO: Have more information-specific retrieval methods if not self._graph.has_node(entity): return [] results = [] for src, sink in nx.dfs_edges(self._graph, entity, depth_limit=depth): relation = self._graph[src][sink]["relation"] results.append(f"{src} {relation} {sink}") return results
[docs] def write_to_gml(self, path: str) -> None: import networkx as nx nx.write_gml(self._graph, path)
[docs] def clear(self) -> None: """Clear the graph.""" self._graph.clear()
[docs] def clear_edges(self) -> None: """Clear the graph edges.""" self._graph.clear_edges()
[docs] def add_node(self, node: str) -> None: """Add node in the graph.""" self._graph.add_node(node)
[docs] def remove_node(self, node: str) -> None: """Remove node from the graph.""" if self._graph.has_node(node): self._graph.remove_node(node)
[docs] def has_node(self, node: str) -> bool: """Return if graph has the given node.""" return self._graph.has_node(node)
[docs] def remove_edge(self, source_node: str, destination_node: str) -> None: """Remove edge from the graph.""" self._graph.remove_edge(source_node, destination_node)
[docs] def has_edge(self, source_node: str, destination_node: str) -> bool: """Return if graph has an edge between the given nodes.""" if self._graph.has_node(source_node) and self._graph.has_node(destination_node): return self._graph.has_edge(source_node, destination_node) else: return False
[docs] def get_neighbors(self, node: str) -> List[str]: """Return the neighbor nodes of the given node.""" return self._graph.neighbors(node)
[docs] def get_number_of_nodes(self) -> int: """Get number of nodes in the graph.""" return self._graph.number_of_nodes()
[docs] def get_topological_sort(self) -> List[str]: """Get a list of entity names in the graph sorted by causal dependence.""" import networkx as nx return list(nx.topological_sort(self._graph))
[docs] def draw_graphviz(self, **kwargs: Any) -> None: """ Provides better drawing Usage in a jupyter notebook: >>> from IPython.display import SVG >>> self.draw_graphviz_svg(layout="dot", filename="web.svg") >>> SVG('web.svg') """ from networkx.drawing.nx_agraph import to_agraph try: import pygraphviz # noqa: F401 except ImportError as e: if e.name == "_graphviz": """ >>> e.msg # pygraphviz throws this error ImportError: libcgraph.so.6: cannot open shared object file """ raise ImportError( "Could not import graphviz debian package. " "Please install it with:" "`sudo apt-get update`" "`sudo apt-get install graphviz graphviz-dev`" ) else: raise ImportError( "Could not import pygraphviz python package. " "Please install it with:" "`pip install pygraphviz`." ) graph = to_agraph(self._graph) # --> pygraphviz.agraph.AGraph # pygraphviz.github.io/documentation/stable/tutorial.html#layout-and-drawing graph.layout(prog=kwargs.get("prog", "dot")) graph.draw(kwargs.get("path", "graph.svg"))