Source code for langchain_community.llms.arcee
from typing import Any, Dict, List, Optional, Union, cast
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_community.utilities.arcee import ArceeWrapper, DALMFilter
[docs]class Arcee(LLM):
"""Arcee's Domain Adapted Language Models (DALMs).
To use, set the ``ARCEE_API_KEY`` environment variable with your Arcee API key,
or pass ``arcee_api_key`` as a named parameter.
Example:
.. code-block:: python
from langchain_community.llms import Arcee
arcee = Arcee(
model="DALM-PubMed",
arcee_api_key="ARCEE-API-KEY"
)
response = arcee("AI-driven music therapy")
"""
_client: Optional[ArceeWrapper] = None #: :meta private:
"""Arcee _client."""
arcee_api_key: Union[SecretStr, str, None] = None
"""Arcee API Key"""
model: str
"""Arcee DALM name"""
arcee_api_url: str = "https://api.arcee.ai"
"""Arcee API URL"""
arcee_api_version: str = "v2"
"""Arcee API Version"""
arcee_app_url: str = "https://app.arcee.ai"
"""Arcee App URL"""
model_id: str = ""
"""Arcee Model ID"""
model_kwargs: Optional[Dict[str, Any]] = None
"""Keyword arguments to pass to the model."""
class Config:
extra = "forbid"
underscore_attrs_are_private = True
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "arcee"
def __init__(self, **data: Any) -> None:
"""Initializes private fields."""
super().__init__(**data)
api_key = cast(SecretStr, self.arcee_api_key)
self._client = ArceeWrapper(
arcee_api_key=api_key,
arcee_api_url=self.arcee_api_url,
arcee_api_version=self.arcee_api_version,
model_kwargs=self.model_kwargs,
model_name=self.model,
)
@root_validator(pre=True)
def validate_environments(cls, values: Dict) -> Dict:
"""Validate Arcee environment variables."""
# validate env vars
values["arcee_api_key"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"arcee_api_key",
"ARCEE_API_KEY",
)
)
values["arcee_api_url"] = get_from_dict_or_env(
values,
"arcee_api_url",
"ARCEE_API_URL",
)
values["arcee_app_url"] = get_from_dict_or_env(
values,
"arcee_app_url",
"ARCEE_APP_URL",
)
values["arcee_api_version"] = get_from_dict_or_env(
values,
"arcee_api_version",
"ARCEE_API_VERSION",
)
# validate model kwargs
if values.get("model_kwargs"):
kw = values["model_kwargs"]
# validate size
if kw.get("size") is not None:
if not kw.get("size") >= 0:
raise ValueError("`size` must be positive")
# validate filters
if kw.get("filters") is not None:
if not isinstance(kw.get("filters"), List):
raise ValueError("`filters` must be a list")
for f in kw.get("filters"):
DALMFilter(**f)
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Generate text from Arcee DALM.
Args:
prompt: Prompt to generate text from.
size: The max number of context results to retrieve.
Defaults to 3. (Can be less if filters are provided).
filters: Filters to apply to the context dataset.
"""
try:
if not self._client:
raise ValueError("Client is not initialized.")
return self._client.generate(prompt=prompt, **kwargs)
except Exception as e:
raise Exception(f"Failed to generate text: {e}") from e