Source code for langchain_community.llms.baseten
import logging
import os
from typing import Any, Dict, List, Mapping, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Field
logger = logging.getLogger(__name__)
[docs]class Baseten(LLM):
"""Baseten model
This module allows using LLMs hosted on Baseten.
The LLM deployed on Baseten must have the following properties:
* Must accept input as a dictionary with the key "prompt"
* May accept other input in the dictionary passed through with kwargs
* Must return a string with the model output
To use this module, you must:
* Export your Baseten API key as the environment variable `BASETEN_API_KEY`
* Get the model ID for your model from your Baseten dashboard
* Identify the model deployment ("production" for all model library models)
These code samples use
[Mistral 7B Instruct](https://app.baseten.co/explore/mistral_7b_instruct)
from Baseten's model library.
Examples:
.. code-block:: python
from langchain_community.llms import Baseten
# Production deployment
mistral = Baseten(model="MODEL_ID", deployment="production")
mistral("What is the Mistral wind?")
.. code-block:: python
from langchain_community.llms import Baseten
# Development deployment
mistral = Baseten(model="MODEL_ID", deployment="development")
mistral("What is the Mistral wind?")
.. code-block:: python
from langchain_community.llms import Baseten
# Other published deployment
mistral = Baseten(model="MODEL_ID", deployment="DEPLOYMENT_ID")
mistral("What is the Mistral wind?")
"""
model: str
deployment: str
input: Dict[str, Any] = Field(default_factory=dict)
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"model_kwargs": self.model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of model."""
return "baseten"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
baseten_api_key = os.environ["BASETEN_API_KEY"]
model_id = self.model
if self.deployment == "production":
model_url = f"https://model-{model_id}.api.baseten.co/production/predict"
elif self.deployment == "development":
model_url = f"https://model-{model_id}.api.baseten.co/development/predict"
else: # try specific deployment ID
model_url = f"https://model-{model_id}.api.baseten.co/deployment/{self.deployment}/predict"
response = requests.post(
model_url,
headers={"Authorization": f"Api-Key {baseten_api_key}"},
json={"prompt": prompt, **kwargs},
)
return response.json()