Source code for langchain_community.llms.bigdl_llm
import logging
from typing import Any, Optional
from langchain_core.language_models.llms import LLM
from langchain_community.llms.ipex_llm import IpexLLM
logger = logging.getLogger(__name__)
[docs]class BigdlLLM(IpexLLM):
"""Wrapper around the BigdlLLM model
Example:
.. code-block:: python
from langchain_community.llms import BigdlLLM
llm = BigdlLLM.from_model_id(model_id="THUDM/chatglm-6b")
"""
[docs] @classmethod
def from_model_id(
cls,
model_id: str,
model_kwargs: Optional[dict] = None,
*,
tokenizer_id: Optional[str] = None,
load_in_4bit: bool = True,
load_in_low_bit: Optional[str] = None,
**kwargs: Any,
) -> LLM:
"""
Construct object from model_id
Args:
model_id: Path for the huggingface repo id to be downloaded or
the huggingface checkpoint folder.
tokenizer_id: Path for the huggingface repo id to be downloaded or
the huggingface checkpoint folder which contains the tokenizer.
model_kwargs: Keyword arguments to pass to the model and tokenizer.
kwargs: Extra arguments to pass to the model and tokenizer.
Returns:
An object of BigdlLLM.
"""
logger.warning("BigdlLLM was deprecated. Please use IpexLLM instead.")
try:
from bigdl.llm.transformers import (
AutoModel,
AutoModelForCausalLM,
)
from transformers import AutoTokenizer, LlamaTokenizer
except ImportError:
raise ImportError(
"Could not import bigdl-llm or transformers. "
"Please install it with `pip install --pre --upgrade bigdl-llm[all]`."
)
if load_in_low_bit is not None:
logger.warning(
"""`load_in_low_bit` option is not supported in BigdlLLM and
is ignored. For more data types support with `load_in_low_bit`,
use IpexLLM instead."""
)
if not load_in_4bit:
raise ValueError(
"BigdlLLM only supports loading in 4-bit mode, "
"i.e. load_in_4bit = True. "
"Please install it with `pip install --pre --upgrade bigdl-llm[all]`."
)
_model_kwargs = model_kwargs or {}
_tokenizer_id = tokenizer_id or model_id
try:
tokenizer = AutoTokenizer.from_pretrained(_tokenizer_id, **_model_kwargs)
except Exception:
tokenizer = LlamaTokenizer.from_pretrained(_tokenizer_id, **_model_kwargs)
try:
model = AutoModelForCausalLM.from_pretrained(
model_id, load_in_4bit=True, **_model_kwargs
)
except Exception:
model = AutoModel.from_pretrained(
model_id, load_in_4bit=True, **_model_kwargs
)
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
}
return cls(
model_id=model_id,
model=model,
tokenizer=tokenizer,
model_kwargs=_model_kwargs,
**kwargs,
)
[docs] @classmethod
def from_model_id_low_bit(
cls,
model_id: str,
model_kwargs: Optional[dict] = None,
*,
tokenizer_id: Optional[str] = None,
**kwargs: Any,
) -> LLM:
"""
Construct low_bit object from model_id
Args:
model_id: Path for the bigdl-llm transformers low-bit model folder.
tokenizer_id: Path for the huggingface repo id or local model folder
which contains the tokenizer.
model_kwargs: Keyword arguments to pass to the model and tokenizer.
kwargs: Extra arguments to pass to the model and tokenizer.
Returns:
An object of BigdlLLM.
"""
logger.warning("BigdlLLM was deprecated. Please use IpexLLM instead.")
try:
from bigdl.llm.transformers import (
AutoModel,
AutoModelForCausalLM,
)
from transformers import AutoTokenizer, LlamaTokenizer
except ImportError:
raise ImportError(
"Could not import bigdl-llm or transformers. "
"Please install it with `pip install --pre --upgrade bigdl-llm[all]`."
)
_model_kwargs = model_kwargs or {}
_tokenizer_id = tokenizer_id or model_id
try:
tokenizer = AutoTokenizer.from_pretrained(_tokenizer_id, **_model_kwargs)
except Exception:
tokenizer = LlamaTokenizer.from_pretrained(_tokenizer_id, **_model_kwargs)
try:
model = AutoModelForCausalLM.load_low_bit(model_id, **_model_kwargs)
except Exception:
model = AutoModel.load_low_bit(model_id, **_model_kwargs)
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
}
return cls(
model_id=model_id,
model=model,
tokenizer=tokenizer,
model_kwargs=_model_kwargs,
**kwargs,
)
@property
def _llm_type(self) -> str:
return "bigdl-llm"