Source code for langchain_community.llms.chatglm
import logging
from typing import Any, List, Mapping, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_community.llms.utils import enforce_stop_tokens
logger = logging.getLogger(__name__)
[docs]class ChatGLM(LLM):
"""ChatGLM LLM service.
Example:
.. code-block:: python
from langchain_community.llms import ChatGLM
endpoint_url = (
"http://127.0.0.1:8000"
)
ChatGLM_llm = ChatGLM(
endpoint_url=endpoint_url
)
"""
endpoint_url: str = "http://127.0.0.1:8000/"
"""Endpoint URL to use."""
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
max_token: int = 20000
"""Max token allowed to pass to the model."""
temperature: float = 0.1
"""LLM model temperature from 0 to 10."""
history: List[List] = []
"""History of the conversation"""
top_p: float = 0.7
"""Top P for nucleus sampling from 0 to 1"""
with_history: bool = False
"""Whether to use history or not"""
@property
def _llm_type(self) -> str:
return "chat_glm"
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"endpoint_url": self.endpoint_url},
**{"model_kwargs": _model_kwargs},
}
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to a ChatGLM LLM inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = chatglm_llm.invoke("Who are you?")
"""
_model_kwargs = self.model_kwargs or {}
# HTTP headers for authorization
headers = {"Content-Type": "application/json"}
payload = {
"prompt": prompt,
"temperature": self.temperature,
"history": self.history,
"max_length": self.max_token,
"top_p": self.top_p,
}
payload.update(_model_kwargs)
payload.update(kwargs)
logger.debug(f"ChatGLM payload: {payload}")
# call api
try:
response = requests.post(self.endpoint_url, headers=headers, json=payload)
except requests.exceptions.RequestException as e:
raise ValueError(f"Error raised by inference endpoint: {e}")
logger.debug(f"ChatGLM response: {response}")
if response.status_code != 200:
raise ValueError(f"Failed with response: {response}")
try:
parsed_response = response.json()
# Check if response content does exists
if isinstance(parsed_response, dict):
content_keys = "response"
if content_keys in parsed_response:
text = parsed_response[content_keys]
else:
raise ValueError(f"No content in response : {parsed_response}")
else:
raise ValueError(f"Unexpected response type: {parsed_response}")
except requests.exceptions.JSONDecodeError as e:
raise ValueError(
f"Error raised during decoding response from inference endpoint: {e}."
f"\nResponse: {response.text}"
)
if stop is not None:
text = enforce_stop_tokens(text, stop)
if self.with_history:
self.history = parsed_response["history"]
return text