Source code for langchain_community.llms.mosaicml
from typing import Any, Dict, List, Mapping, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.utils import get_from_dict_or_env, pre_init
from langchain_community.llms.utils import enforce_stop_tokens
INSTRUCTION_KEY = "### Instruction:"
RESPONSE_KEY = "### Response:"
INTRO_BLURB = (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request."
)
PROMPT_FOR_GENERATION_FORMAT = """{intro}
{instruction_key}
{instruction}
{response_key}
""".format(
intro=INTRO_BLURB,
instruction_key=INSTRUCTION_KEY,
instruction="{instruction}",
response_key=RESPONSE_KEY,
)
[docs]class MosaicML(LLM):
"""MosaicML LLM service.
To use, you should have the
environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.llms import MosaicML
endpoint_url = (
"https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict"
)
mosaic_llm = MosaicML(
endpoint_url=endpoint_url,
mosaicml_api_token="my-api-key"
)
"""
endpoint_url: str = (
"https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict"
)
"""Endpoint URL to use."""
inject_instruction_format: bool = False
"""Whether to inject the instruction format into the prompt."""
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
retry_sleep: float = 1.0
"""How long to try sleeping for if a rate limit is encountered"""
mosaicml_api_token: Optional[str] = None
class Config:
extra = "forbid"
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
mosaicml_api_token = get_from_dict_or_env(
values, "mosaicml_api_token", "MOSAICML_API_TOKEN"
)
values["mosaicml_api_token"] = mosaicml_api_token
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"endpoint_url": self.endpoint_url},
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "mosaic"
def _transform_prompt(self, prompt: str) -> str:
"""Transform prompt."""
if self.inject_instruction_format:
prompt = PROMPT_FOR_GENERATION_FORMAT.format(
instruction=prompt,
)
return prompt
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
is_retry: bool = False,
**kwargs: Any,
) -> str:
"""Call out to a MosaicML LLM inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = mosaic_llm.invoke("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
prompt = self._transform_prompt(prompt)
payload = {"inputs": [prompt]}
payload.update(_model_kwargs)
payload.update(kwargs)
# HTTP headers for authorization
headers = {
"Authorization": f"{self.mosaicml_api_token}",
"Content-Type": "application/json",
}
# send request
try:
response = requests.post(self.endpoint_url, headers=headers, json=payload)
except requests.exceptions.RequestException as e:
raise ValueError(f"Error raised by inference endpoint: {e}")
try:
if response.status_code == 429:
if not is_retry:
import time
time.sleep(self.retry_sleep)
return self._call(prompt, stop, run_manager, is_retry=True)
raise ValueError(
f"Error raised by inference API: rate limit exceeded.\nResponse: "
f"{response.text}"
)
parsed_response = response.json()
# The inference API has changed a couple of times, so we add some handling
# to be robust to multiple response formats.
if isinstance(parsed_response, dict):
output_keys = ["data", "output", "outputs"]
for key in output_keys:
if key in parsed_response:
output_item = parsed_response[key]
break
else:
raise ValueError(
f"No valid key ({', '.join(output_keys)}) in response:"
f" {parsed_response}"
)
if isinstance(output_item, list):
text = output_item[0]
else:
text = output_item
else:
raise ValueError(f"Unexpected response type: {parsed_response}")
# Older versions of the API include the input in the output response
if text.startswith(prompt):
text = text[len(prompt) :]
except requests.exceptions.JSONDecodeError as e:
raise ValueError(
f"Error raised by inference API: {e}.\nResponse: {response.text}"
)
# TODO: replace when MosaicML supports custom stop tokens natively
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text