Source code for langchain_community.llms.oci_data_science_model_deployment_endpoint

import logging
from typing import Any, Dict, List, Optional

import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Field
from langchain_core.utils import get_from_dict_or_env, pre_init

logger = logging.getLogger(__name__)

DEFAULT_TIME_OUT = 300
DEFAULT_CONTENT_TYPE_JSON = "application/json"


[docs]class OCIModelDeploymentLLM(LLM): """Base class for LLM deployed on OCI Data Science Model Deployment.""" auth: dict = Field(default_factory=dict, exclude=True) """ADS auth dictionary for OCI authentication: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html. This can be generated by calling `ads.common.auth.api_keys()` or `ads.common.auth.resource_principal()`. If this is not provided then the `ads.common.default_signer()` will be used.""" max_tokens: int = 256 """Denotes the number of tokens to predict per generation.""" temperature: float = 0.2 """A non-negative float that tunes the degree of randomness in generation.""" k: int = 0 """Number of most likely tokens to consider at each step.""" p: float = 0.75 """Total probability mass of tokens to consider at each step.""" endpoint: str = "" """The uri of the endpoint from the deployed Model Deployment model.""" best_of: int = 1 """Generates best_of completions server-side and returns the "best" (the one with the highest log probability per token). """ stop: Optional[List[str]] = None """Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.""" @pre_init def validate_environment( # pylint: disable=no-self-argument cls, values: Dict ) -> Dict: """Validate that python package exists in environment.""" try: import ads except ImportError as ex: raise ImportError( "Could not import ads python package. " "Please install it with `pip install oracle_ads`." ) from ex if not values.get("auth", None): values["auth"] = ads.common.auth.default_signer() values["endpoint"] = get_from_dict_or_env( values, "endpoint", "OCI_LLM_ENDPOINT", ) return values @property def _default_params(self) -> Dict[str, Any]: """Default parameters for the model.""" raise NotImplementedError @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { **{"endpoint": self.endpoint}, **self._default_params, } def _construct_json_body(self, prompt: str, params: dict) -> dict: """Constructs the request body as a dictionary (JSON).""" raise NotImplementedError def _invocation_params(self, stop: Optional[List[str]], **kwargs: Any) -> dict: """Combines the invocation parameters with default parameters.""" params = self._default_params if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: params["stop"] = self.stop elif stop is not None: params["stop"] = stop else: # Don't set "stop" in param as None. It should be a list. params["stop"] = [] return {**params, **kwargs} def _process_response(self, response_json: dict) -> str: raise NotImplementedError def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to OCI Data Science Model Deployment endpoint. Args: prompt (str): The prompt to pass into the model. stop (List[str], Optional): List of stop words to use when generating. kwargs: requests_kwargs: Additional ``**kwargs`` to pass to requests.post Returns: The string generated by the model. Example: .. code-block:: python response = oci_md("Tell me a joke.") """ requests_kwargs = kwargs.pop("requests_kwargs", {}) params = self._invocation_params(stop, **kwargs) body = self._construct_json_body(prompt, params) logger.info(f"LLM API Request:\n{prompt}") response = self._send_request( data=body, endpoint=self.endpoint, **requests_kwargs ) completion = self._process_response(response) logger.info(f"LLM API Completion:\n{completion}") return completion def _send_request( self, data: Any, endpoint: str, header: Optional[dict] = {}, **kwargs: Any, ) -> Dict: """Sends request to the oci data science model deployment endpoint. Args: data (Json serializable): data need to be sent to the endpoint. endpoint (str): The model HTTP endpoint. header (dict, optional): A dictionary of HTTP headers to send to the specified url. Defaults to {}. kwargs: Additional ``**kwargs`` to pass to requests.post. Raises: Exception: Raise when invoking fails. Returns: A JSON representation of a requests.Response object. """ if not header: header = {} header["Content-Type"] = ( header.pop("content_type", DEFAULT_CONTENT_TYPE_JSON) or DEFAULT_CONTENT_TYPE_JSON ) request_kwargs = {"json": data} request_kwargs["headers"] = header timeout = kwargs.pop("timeout", DEFAULT_TIME_OUT) attempts = 0 while attempts < 2: request_kwargs["auth"] = self.auth.get("signer") response = requests.post( endpoint, timeout=timeout, **request_kwargs, **kwargs ) if response.status_code == 401: self._refresh_signer() attempts += 1 continue break try: response.raise_for_status() response_json = response.json() except Exception: logger.error( "DEBUG INFO: request_kwargs=%s, status_code=%s, content=%s", request_kwargs, response.status_code, response.content, ) raise return response_json def _refresh_signer(self) -> None: if self.auth.get("signer", None) and hasattr( self.auth["signer"], "refresh_security_token" ): self.auth["signer"].refresh_security_token()
[docs]class OCIModelDeploymentTGI(OCIModelDeploymentLLM): """OCI Data Science Model Deployment TGI Endpoint. To use, you must provide the model HTTP endpoint from your deployed model, e.g. https://<MD_OCID>/predict. To authenticate, `oracle-ads` has been used to automatically load credentials: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html Make sure to have the required policies to access the OCI Data Science Model Deployment endpoint. See: https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint Example: .. code-block:: python from langchain_community.llms import ModelDeploymentTGI oci_md = ModelDeploymentTGI(endpoint="https://<MD_OCID>/predict") """ do_sample: bool = True """If set to True, this parameter enables decoding strategies such as multi-nominal sampling, beam-search multi-nominal sampling, Top-K sampling and Top-p sampling. """ watermark: bool = True """Watermarking with `A Watermark for Large Language Models <https://arxiv.org/abs/2301.10226>`_. Defaults to True.""" return_full_text: bool = False """Whether to prepend the prompt to the generated text. Defaults to False.""" @property def _llm_type(self) -> str: """Return type of llm.""" return "oci_model_deployment_tgi_endpoint" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for invoking OCI model deployment TGI endpoint.""" return { "best_of": self.best_of, "max_new_tokens": self.max_tokens, "temperature": self.temperature, "top_k": self.k if self.k > 0 else None, # `top_k` must be strictly positive' "top_p": self.p, "do_sample": self.do_sample, "return_full_text": self.return_full_text, "watermark": self.watermark, } def _construct_json_body(self, prompt: str, params: dict) -> dict: return { "inputs": prompt, "parameters": params, } def _process_response(self, response_json: dict) -> str: return str(response_json.get("generated_text", response_json)) + "\n"
[docs]class OCIModelDeploymentVLLM(OCIModelDeploymentLLM): """VLLM deployed on OCI Data Science Model Deployment To use, you must provide the model HTTP endpoint from your deployed model, e.g. https://<MD_OCID>/predict. To authenticate, `oracle-ads` has been used to automatically load credentials: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html Make sure to have the required policies to access the OCI Data Science Model Deployment endpoint. See: https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint Example: .. code-block:: python from langchain_community.llms import OCIModelDeploymentVLLM oci_md = OCIModelDeploymentVLLM( endpoint="https://<MD_OCID>/predict", model="mymodel" ) """ model: str """The name of the model.""" n: int = 1 """Number of output sequences to return for the given prompt.""" k: int = -1 """Number of most likely tokens to consider at each step.""" frequency_penalty: float = 0.0 """Penalizes repeated tokens according to frequency. Between 0 and 1.""" presence_penalty: float = 0.0 """Penalizes repeated tokens. Between 0 and 1.""" use_beam_search: bool = False """Whether to use beam search instead of sampling.""" ignore_eos: bool = False """Whether to ignore the EOS token and continue generating tokens after the EOS token is generated.""" logprobs: Optional[int] = None """Number of log probabilities to return per output token.""" @property def _llm_type(self) -> str: """Return type of llm.""" return "oci_model_deployment_vllm_endpoint" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling vllm.""" return { "best_of": self.best_of, "frequency_penalty": self.frequency_penalty, "ignore_eos": self.ignore_eos, "logprobs": self.logprobs, "max_tokens": self.max_tokens, "model": self.model, "n": self.n, "presence_penalty": self.presence_penalty, "stop": self.stop, "temperature": self.temperature, "top_k": self.k, "top_p": self.p, "use_beam_search": self.use_beam_search, } def _construct_json_body(self, prompt: str, params: dict) -> dict: return { "prompt": prompt, **params, } def _process_response(self, response_json: dict) -> str: return response_json["choices"][0]["text"]