from __future__ import annotations
import asyncio
import functools
import logging
from typing import (
Any,
AsyncIterable,
AsyncIterator,
Callable,
Dict,
Iterable,
Iterator,
List,
Mapping,
Optional,
Tuple,
TypeVar,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import Field
from langchain_core.utils import get_from_dict_or_env, pre_init
from requests.exceptions import HTTPError
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
logger = logging.getLogger(__name__)
T = TypeVar("T")
def _create_retry_decorator(llm: Tongyi) -> Callable[[Any], Any]:
min_seconds = 1
max_seconds = 4
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterward
return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(retry_if_exception_type(HTTPError)),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
[docs]def check_response(resp: Any) -> Any:
"""Check the response from the completion call."""
if resp["status_code"] == 200:
return resp
elif resp["status_code"] in [400, 401]:
raise ValueError(
f"status_code: {resp['status_code']} \n "
f"code: {resp['code']} \n message: {resp['message']}"
)
else:
raise HTTPError(
f"HTTP error occurred: status_code: {resp['status_code']} \n "
f"code: {resp['code']} \n message: {resp['message']}",
response=resp,
)
[docs]def generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
def _generate_with_retry(**_kwargs: Any) -> Any:
resp = llm.client.call(**_kwargs)
return check_response(resp)
return _generate_with_retry(**kwargs)
[docs]def stream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
def _stream_generate_with_retry(**_kwargs: Any) -> Any:
responses = llm.client.call(**_kwargs)
for resp in responses:
yield check_response(resp)
return _stream_generate_with_retry(**kwargs)
[docs]async def astream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
"""Async version of `stream_generate_with_retry`.
Because the dashscope SDK doesn't provide an async API,
we wrap `stream_generate_with_retry` with an async generator."""
class _AioTongyiGenerator:
def __init__(self, _llm: Tongyi, **_kwargs: Any):
self.generator = stream_generate_with_retry(_llm, **_kwargs)
def __aiter__(self) -> AsyncIterator[Any]:
return self
async def __anext__(self) -> Any:
value = await asyncio.get_running_loop().run_in_executor(
None, self._safe_next
)
if value is not None:
return value
else:
raise StopAsyncIteration
def _safe_next(self) -> Any:
try:
return next(self.generator)
except StopIteration:
return None
async for chunk in _AioTongyiGenerator(llm, **kwargs):
yield chunk
[docs]def generate_with_last_element_mark(iterable: Iterable[T]) -> Iterator[Tuple[T, bool]]:
"""Generate elements from an iterable,
and a boolean indicating if it is the last element."""
iterator = iter(iterable)
try:
item = next(iterator)
except StopIteration:
return
for next_item in iterator:
yield item, False
item = next_item
yield item, True
[docs]async def agenerate_with_last_element_mark(
iterable: AsyncIterable[T],
) -> AsyncIterator[Tuple[T, bool]]:
"""Generate elements from an async iterable,
and a boolean indicating if it is the last element."""
iterator = iterable.__aiter__()
try:
item = await iterator.__anext__()
except StopAsyncIteration:
return
async for next_item in iterator:
yield item, False
item = next_item
yield item, True
[docs]class Tongyi(BaseLLM):
"""Tongyi completion model integration.
Setup:
Install ``dashscope`` and set environment variables ``DASHSCOPE_API_KEY``.
.. code-block:: bash
pip install dashscope
export DASHSCOPE_API_KEY="your-api-key"
Key init args — completion params:
model: str
Name of Tongyi model to use.
top_p: float
Total probability mass of tokens to consider at each step.
streaming: bool
Whether to stream the results or not.
Key init args — client params:
api_key: Optional[str]
Dashscope API KEY. If not passed in will be read from env var DASHSCOPE_API_KEY.
max_retries: int
Maximum number of retries to make when generating.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_community.llms import Tongyi
llm = Tongyi(
model="qwen-max",
# top_p="...",
# api_key="...",
# other params...
)
Invoke:
.. code-block:: python
input_text = "用50个字左右阐述,生命的意义在于"
llm.invoke(input_text)
.. code-block:: python
'探索、成长、连接与爱——在有限的时间里,不断学习、体验、贡献并寻找与世界和谐共存之道,让每一刻充满价值与意义。'
Stream:
.. code-block:: python
for chunk in llm.stream(input_text):
print(chunk)
.. code-block:: python
探索 | 、 | 成长 | 、连接与爱。 | 在有限的时间里,寻找个人价值, | 贡献于他人,共同体验世界的美好 | ,让世界因自己的存在而更 | 温暖。
Async:
.. code-block:: python
await llm.ainvoke(input_text)
# stream:
# async for chunk in llm.astream(input_text):
# print(chunk)
# batch:
# await llm.abatch([input_text])
.. code-block:: python
'探索、成长、连接与爱。在有限的时间里,寻找个人价值,贡献于他人和社会,体验丰富多彩的情感与经历,不断学习进步,让世界因自己的存在而更美好。'
""" # noqa: E501
@property
def lc_secrets(self) -> Dict[str, str]:
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
client: Any #: :meta private:
model_name: str = Field(default="qwen-plus", alias="model")
"""Model name to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
top_p: float = 0.8
"""Total probability mass of tokens to consider at each step."""
dashscope_api_key: Optional[str] = Field(default=None, alias="api_key")
"""Dashscope api key provide by Alibaba Cloud."""
streaming: bool = False
"""Whether to stream the results or not."""
max_retries: int = 10
"""Maximum number of retries to make when generating."""
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "tongyi"
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["dashscope_api_key"] = get_from_dict_or_env(
values, ["dashscope_api_key", "api_key"], "DASHSCOPE_API_KEY"
)
try:
import dashscope
except ImportError:
raise ImportError(
"Could not import dashscope python package. "
"Please install it with `pip install dashscope`."
)
try:
values["client"] = dashscope.Generation
except AttributeError:
raise ValueError(
"`dashscope` has no `Generation` attribute, this is likely "
"due to an old version of the dashscope package. Try upgrading it "
"with `pip install --upgrade dashscope`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Tongyi Qwen API."""
normal_params = {
"model": self.model_name,
"top_p": self.top_p,
"api_key": self.dashscope_api_key,
}
return {**normal_params, **self.model_kwargs}
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"model_name": self.model_name, **super()._identifying_params}
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
generations = []
if self.streaming:
if len(prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
generation: Optional[GenerationChunk] = None
for chunk in self._stream(prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
generations.append([self._chunk_to_generation(generation)])
else:
params: Dict[str, Any] = self._invocation_params(stop=stop, **kwargs)
for prompt in prompts:
completion = generate_with_retry(self, prompt=prompt, **params)
generations.append(
[Generation(**self._generation_from_qwen_resp(completion))]
)
return LLMResult(
generations=generations,
llm_output={
"model_name": self.model_name,
},
)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
generations = []
if self.streaming:
if len(prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
generation: Optional[GenerationChunk] = None
async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
generations.append([self._chunk_to_generation(generation)])
else:
params: Dict[str, Any] = self._invocation_params(stop=stop, **kwargs)
for prompt in prompts:
completion = await asyncio.get_running_loop().run_in_executor(
None,
functools.partial(
generate_with_retry, **{"llm": self, "prompt": prompt, **params}
),
)
generations.append(
[Generation(**self._generation_from_qwen_resp(completion))]
)
return LLMResult(
generations=generations,
llm_output={
"model_name": self.model_name,
},
)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
params: Dict[str, Any] = self._invocation_params(
stop=stop, stream=True, **kwargs
)
for stream_resp, is_last_chunk in generate_with_last_element_mark(
stream_generate_with_retry(self, prompt=prompt, **params)
):
chunk = GenerationChunk(
**self._generation_from_qwen_resp(stream_resp, is_last_chunk)
)
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
)
yield chunk
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
params: Dict[str, Any] = self._invocation_params(
stop=stop, stream=True, **kwargs
)
async for stream_resp, is_last_chunk in agenerate_with_last_element_mark(
astream_generate_with_retry(self, prompt=prompt, **params)
):
chunk = GenerationChunk(
**self._generation_from_qwen_resp(stream_resp, is_last_chunk)
)
if run_manager:
await run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
)
yield chunk
def _invocation_params(self, stop: Any, **kwargs: Any) -> Dict[str, Any]:
params = {
**self._default_params,
**kwargs,
}
if stop is not None:
params["stop"] = stop
if params.get("stream"):
params["incremental_output"] = True
return params
@staticmethod
def _generation_from_qwen_resp(
resp: Any, is_last_chunk: bool = True
) -> Dict[str, Any]:
# According to the response from dashscope,
# each chunk's `generation_info` overwrites the previous one.
# Besides, The `merge_dicts` method,
# which is used to concatenate `generation_info` in `GenerationChunk`,
# does not support merging of int type values.
# Therefore, we adopt the `generation_info` of the last chunk
# and discard the `generation_info` of the intermediate chunks.
if is_last_chunk:
return dict(
text=resp["output"]["text"],
generation_info=dict(
finish_reason=resp["output"]["finish_reason"],
request_id=resp["request_id"],
token_usage=dict(resp["usage"]),
),
)
else:
return dict(text=resp["output"]["text"])
@staticmethod
def _chunk_to_generation(chunk: GenerationChunk) -> Generation:
return Generation(
text=chunk.text,
generation_info=chunk.generation_info,
)