Source code for langchain_community.llms.writer
from typing import Any, Dict, List, Mapping, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.utils import get_from_dict_or_env, pre_init
from langchain_community.llms.utils import enforce_stop_tokens
[docs]class Writer(LLM):
"""Writer large language models.
To use, you should have the environment variable ``WRITER_API_KEY`` and
``WRITER_ORG_ID`` set with your API key and organization ID respectively.
Example:
.. code-block:: python
from langchain_community.llms import Writer
writer = Writer(model_id="palmyra-base")
"""
writer_org_id: Optional[str] = None
"""Writer organization ID."""
model_id: str = "palmyra-instruct"
"""Model name to use."""
min_tokens: Optional[int] = None
"""Minimum number of tokens to generate."""
max_tokens: Optional[int] = None
"""Maximum number of tokens to generate."""
temperature: Optional[float] = None
"""What sampling temperature to use."""
top_p: Optional[float] = None
"""Total probability mass of tokens to consider at each step."""
stop: Optional[List[str]] = None
"""Sequences when completion generation will stop."""
presence_penalty: Optional[float] = None
"""Penalizes repeated tokens regardless of frequency."""
repetition_penalty: Optional[float] = None
"""Penalizes repeated tokens according to frequency."""
best_of: Optional[int] = None
"""Generates this many completions server-side and returns the "best"."""
logprobs: bool = False
"""Whether to return log probabilities."""
n: Optional[int] = None
"""How many completions to generate."""
writer_api_key: Optional[str] = None
"""Writer API key."""
base_url: Optional[str] = None
"""Base url to use, if None decides based on model name."""
class Config:
extra = "forbid"
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and organization id exist in environment."""
writer_api_key = get_from_dict_or_env(
values, "writer_api_key", "WRITER_API_KEY"
)
values["writer_api_key"] = writer_api_key
writer_org_id = get_from_dict_or_env(values, "writer_org_id", "WRITER_ORG_ID")
values["writer_org_id"] = writer_org_id
return values
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Writer API."""
return {
"minTokens": self.min_tokens,
"maxTokens": self.max_tokens,
"temperature": self.temperature,
"topP": self.top_p,
"stop": self.stop,
"presencePenalty": self.presence_penalty,
"repetitionPenalty": self.repetition_penalty,
"bestOf": self.best_of,
"logprobs": self.logprobs,
"n": self.n,
}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"model_id": self.model_id, "writer_org_id": self.writer_org_id},
**self._default_params,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "writer"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Writer's completions endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = Writer("Tell me a joke.")
"""
if self.base_url is not None:
base_url = self.base_url
else:
base_url = (
"https://enterprise-api.writer.com/llm"
f"/organization/{self.writer_org_id}"
f"/model/{self.model_id}/completions"
)
params = {**self._default_params, **kwargs}
response = requests.post(
url=base_url,
headers={
"Authorization": f"{self.writer_api_key}",
"Content-Type": "application/json",
"Accept": "application/json",
},
json={"prompt": prompt, **params},
)
text = response.text
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the model parameters
text = enforce_stop_tokens(text, stop)
return text