import copy
import json
from typing import Any, Dict, List, Optional, Type, Union
import jsonpatch
from langchain_core.exceptions import OutputParserException
from langchain_core.output_parsers import (
BaseCumulativeTransformOutputParser,
BaseGenerationOutputParser,
)
from langchain_core.output_parsers.json import parse_partial_json
from langchain_core.outputs.chat_generation import (
ChatGeneration,
Generation,
)
from langchain_core.pydantic_v1 import BaseModel, root_validator
[docs]class OutputFunctionsParser(BaseGenerationOutputParser[Any]):
"""Parse an output that is one of sets of values."""
args_only: bool = True
"""Whether to only return the arguments to the function call."""
[docs] def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
generation = result[0]
if not isinstance(generation, ChatGeneration):
raise OutputParserException(
"This output parser can only be used with a chat generation."
)
message = generation.message
try:
func_call = copy.deepcopy(message.additional_kwargs["function_call"])
except KeyError as exc:
raise OutputParserException(f"Could not parse function call: {exc}")
if self.args_only:
return func_call["arguments"]
return func_call
[docs]class JsonOutputFunctionsParser(BaseCumulativeTransformOutputParser[Any]):
"""Parse an output as the Json object."""
strict: bool = False
"""Whether to allow non-JSON-compliant strings.
See: https://docs.python.org/3/library/json.html#encoders-and-decoders
Useful when the parsed output may include unicode characters or new lines.
"""
args_only: bool = True
"""Whether to only return the arguments to the function call."""
@property
def _type(self) -> str:
return "json_functions"
def _diff(self, prev: Optional[Any], next: Any) -> Any:
return jsonpatch.make_patch(prev, next).patch
[docs] def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
if len(result) != 1:
raise OutputParserException(
f"Expected exactly one result, but got {len(result)}"
)
generation = result[0]
if not isinstance(generation, ChatGeneration):
raise OutputParserException(
"This output parser can only be used with a chat generation."
)
message = generation.message
if "function_call" not in message.additional_kwargs:
return None
try:
function_call = message.additional_kwargs["function_call"]
except KeyError as exc:
if partial:
return None
else:
raise OutputParserException(f"Could not parse function call: {exc}")
try:
if partial:
if self.args_only:
return parse_partial_json(
function_call["arguments"], strict=self.strict
)
else:
return {
**function_call,
"arguments": parse_partial_json(
function_call["arguments"], strict=self.strict
),
}
else:
if self.args_only:
try:
return json.loads(
function_call["arguments"], strict=self.strict
)
except (json.JSONDecodeError, TypeError) as exc:
raise OutputParserException(
f"Could not parse function call data: {exc}"
)
else:
try:
return {
**function_call,
"arguments": json.loads(
function_call["arguments"], strict=self.strict
),
}
except (json.JSONDecodeError, TypeError) as exc:
raise OutputParserException(
f"Could not parse function call data: {exc}"
)
except KeyError:
return None
# This method would be called by the default implementation of `parse_result`
# but we're overriding that method so it's not needed.
[docs] def parse(self, text: str) -> Any:
raise NotImplementedError()
[docs]class JsonKeyOutputFunctionsParser(JsonOutputFunctionsParser):
"""Parse an output as the element of the Json object."""
key_name: str
"""The name of the key to return."""
[docs] def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
res = super().parse_result(result, partial=partial)
if partial and res is None:
return None
return res.get(self.key_name) if partial else res[self.key_name]
[docs]class PydanticOutputFunctionsParser(OutputFunctionsParser):
"""Parse an output as a pydantic object."""
pydantic_schema: Union[Type[BaseModel], Dict[str, Type[BaseModel]]]
"""The pydantic schema to parse the output with."""
@root_validator(pre=True)
def validate_schema(cls, values: Dict) -> Dict:
schema = values["pydantic_schema"]
if "args_only" not in values:
values["args_only"] = isinstance(schema, type) and issubclass(
schema, BaseModel
)
elif values["args_only"] and isinstance(schema, Dict):
raise ValueError(
"If multiple pydantic schemas are provided then args_only should be"
" False."
)
return values
[docs] def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
_result = super().parse_result(result)
if self.args_only:
pydantic_args = self.pydantic_schema.parse_raw(_result) # type: ignore
else:
fn_name = _result["name"]
_args = _result["arguments"]
pydantic_args = self.pydantic_schema[fn_name].parse_raw(_args) # type: ignore
return pydantic_args
[docs]class PydanticAttrOutputFunctionsParser(PydanticOutputFunctionsParser):
"""Parse an output as an attribute of a pydantic object."""
attr_name: str
"""The name of the attribute to return."""
[docs] def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
result = super().parse_result(result)
return getattr(result, self.attr_name)