Source code for langchain_community.query_constructors.dashvector
"""Logic for converting internal query language to a valid DashVector query."""
from typing import Tuple, Union
from langchain_core.structured_query import (
Comparator,
Comparison,
Operation,
Operator,
StructuredQuery,
Visitor,
)
[docs]class DashvectorTranslator(Visitor):
"""Logic for converting internal query language elements to valid filters."""
allowed_operators = [Operator.AND, Operator.OR]
allowed_comparators = [
Comparator.EQ,
Comparator.GT,
Comparator.GTE,
Comparator.LT,
Comparator.LTE,
Comparator.LIKE,
]
map_dict = {
Operator.AND: " AND ",
Operator.OR: " OR ",
Comparator.EQ: " = ",
Comparator.GT: " > ",
Comparator.GTE: " >= ",
Comparator.LT: " < ",
Comparator.LTE: " <= ",
Comparator.LIKE: " LIKE ",
}
def _format_func(self, func: Union[Operator, Comparator]) -> str:
self._validate_func(func)
return self.map_dict[func]
[docs] def visit_operation(self, operation: Operation) -> str:
args = [arg.accept(self) for arg in operation.arguments]
return self._format_func(operation.operator).join(args)
[docs] def visit_comparison(self, comparison: Comparison) -> str:
value = comparison.value
if isinstance(value, str):
if comparison.comparator == Comparator.LIKE:
value = f"'%{value}%'"
else:
value = f"'{value}'"
return (
f"{comparison.attribute}{self._format_func(comparison.comparator)}{value}"
)
[docs] def visit_structured_query(
self, structured_query: StructuredQuery
) -> Tuple[str, dict]:
if structured_query.filter is None:
kwargs = {}
else:
kwargs = {"filter": structured_query.filter.accept(self)}
return structured_query.query, kwargs