Source code for langchain_community.retrievers.embedchain
"""Wrapper around Embedchain Retriever."""
from __future__ import annotations
from typing import Any, Iterable, List, Optional
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
[docs]class EmbedchainRetriever(BaseRetriever):
"""`Embedchain` retriever."""
client: Any
"""Embedchain Pipeline."""
[docs] @classmethod
def create(cls, yaml_path: Optional[str] = None) -> EmbedchainRetriever:
"""
Create a EmbedchainRetriever from a YAML configuration file.
Args:
yaml_path: Path to the YAML configuration file. If not provided,
a default configuration is used.
Returns:
An instance of EmbedchainRetriever.
"""
from embedchain import Pipeline
# Create an Embedchain Pipeline instance
if yaml_path:
client = Pipeline.from_config(yaml_path=yaml_path)
else:
client = Pipeline()
return cls(client=client)
[docs] def add_texts(
self,
texts: Iterable[str],
) -> List[str]:
"""Run more texts through the embeddings and add to the retriever.
Args:
texts: Iterable of strings/URLs to add to the retriever.
Returns:
List of ids from adding the texts into the retriever.
"""
ids = []
for text in texts:
_id = self.client.add(text)
ids.append(_id)
return ids
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
res = self.client.search(query)
docs = []
for r in res:
docs.append(
Document(
page_content=r["context"],
metadata={
"source": r["metadata"]["url"],
"document_id": r["metadata"]["doc_id"],
},
)
)
return docs