"""Taken from: https://docs.pinecone.io/docs/hybrid-search"""
import hashlib
from typing import Any, Dict, List, Optional
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.retrievers import BaseRetriever
from langchain_core.utils import pre_init
[docs]def hash_text(text: str) -> str:
"""Hash a text using SHA256.
Args:
text: Text to hash.
Returns:
Hashed text.
"""
return str(hashlib.sha256(text.encode("utf-8")).hexdigest())
[docs]def create_index(
contexts: List[str],
index: Any,
embeddings: Embeddings,
sparse_encoder: Any,
ids: Optional[List[str]] = None,
metadatas: Optional[List[dict]] = None,
namespace: Optional[str] = None,
) -> None:
"""Create an index from a list of contexts.
It modifies the index argument in-place!
Args:
contexts: List of contexts to embed.
index: Index to use.
embeddings: Embeddings model to use.
sparse_encoder: Sparse encoder to use.
ids: List of ids to use for the documents.
metadatas: List of metadata to use for the documents.
namespace: Namespace value for index partition.
"""
batch_size = 32
_iterator = range(0, len(contexts), batch_size)
try:
from tqdm.auto import tqdm
_iterator = tqdm(_iterator)
except ImportError:
pass
if ids is None:
# create unique ids using hash of the text
ids = [hash_text(context) for context in contexts]
for i in _iterator:
# find end of batch
i_end = min(i + batch_size, len(contexts))
# extract batch
context_batch = contexts[i:i_end]
batch_ids = ids[i:i_end]
metadata_batch = (
metadatas[i:i_end] if metadatas else [{} for _ in context_batch]
)
# add context passages as metadata
meta = [
{"context": context, **metadata}
for context, metadata in zip(context_batch, metadata_batch)
]
# create dense vectors
dense_embeds = embeddings.embed_documents(context_batch)
# create sparse vectors
sparse_embeds = sparse_encoder.encode_documents(context_batch)
for s in sparse_embeds:
s["values"] = [float(s1) for s1 in s["values"]]
vectors = []
# loop through the data and create dictionaries for upserts
for doc_id, sparse, dense, metadata in zip(
batch_ids, sparse_embeds, dense_embeds, meta
):
vectors.append(
{
"id": doc_id,
"sparse_values": sparse,
"values": dense,
"metadata": metadata,
}
)
# upload the documents to the new hybrid index
index.upsert(vectors, namespace=namespace)
[docs]class PineconeHybridSearchRetriever(BaseRetriever):
"""`Pinecone Hybrid Search` retriever."""
embeddings: Embeddings
"""Embeddings model to use."""
"""description"""
sparse_encoder: Any
"""Sparse encoder to use."""
index: Any
"""Pinecone index to use."""
top_k: int = 4
"""Number of documents to return."""
alpha: float = 0.5
"""Alpha value for hybrid search."""
namespace: Optional[str] = None
"""Namespace value for index partition."""
class Config:
arbitrary_types_allowed = True
extra = "forbid"
[docs] def add_texts(
self,
texts: List[str],
ids: Optional[List[str]] = None,
metadatas: Optional[List[dict]] = None,
namespace: Optional[str] = None,
) -> None:
create_index(
texts,
self.index,
self.embeddings,
self.sparse_encoder,
ids=ids,
metadatas=metadatas,
namespace=namespace,
)
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
try:
from pinecone_text.hybrid import hybrid_convex_scale # noqa:F401
from pinecone_text.sparse.base_sparse_encoder import (
BaseSparseEncoder, # noqa:F401
)
except ImportError:
raise ImportError(
"Could not import pinecone_text python package. "
"Please install it with `pip install pinecone_text`."
)
return values
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any
) -> List[Document]:
from pinecone_text.hybrid import hybrid_convex_scale
sparse_vec = self.sparse_encoder.encode_queries(query)
# convert the question into a dense vector
dense_vec = self.embeddings.embed_query(query)
# scale alpha with hybrid_scale
dense_vec, sparse_vec = hybrid_convex_scale(dense_vec, sparse_vec, self.alpha)
sparse_vec["values"] = [float(s1) for s1 in sparse_vec["values"]]
# query pinecone with the query parameters
result = self.index.query(
vector=dense_vec,
sparse_vector=sparse_vec,
top_k=self.top_k,
include_metadata=True,
namespace=self.namespace,
**kwargs,
)
final_result = []
for res in result["matches"]:
context = res["metadata"].pop("context")
metadata = res["metadata"]
if "score" not in metadata and "score" in res:
metadata["score"] = res["score"]
final_result.append(Document(page_content=context, metadata=metadata))
# return search results as json
return final_result