Source code for langchain_community.retrievers.weaviate_hybrid_search

from __future__ import annotations

from typing import Any, Dict, List, Optional, cast
from uuid import uuid4

from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.pydantic_v1 import root_validator
from langchain_core.retrievers import BaseRetriever


[docs]class WeaviateHybridSearchRetriever(BaseRetriever): """`Weaviate hybrid search` retriever. See the documentation: https://weaviate.io/blog/hybrid-search-explained """ client: Any """keyword arguments to pass to the Weaviate client.""" index_name: str """The name of the index to use.""" text_key: str """The name of the text key to use.""" alpha: float = 0.5 """The weight of the text key in the hybrid search.""" k: int = 4 """The number of results to return.""" attributes: List[str] """The attributes to return in the results.""" create_schema_if_missing: bool = True """Whether to create the schema if it doesn't exist.""" @root_validator(pre=True) def validate_client( cls, values: Dict[str, Any], ) -> Dict[str, Any]: try: import weaviate except ImportError: raise ImportError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(values["client"], weaviate.Client): client = values["client"] raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) if values.get("attributes") is None: values["attributes"] = [] cast(List, values["attributes"]).append(values["text_key"]) if values.get("create_schema_if_missing", True): class_obj = { "class": values["index_name"], "properties": [{"name": values["text_key"], "dataType": ["text"]}], "vectorizer": "text2vec-openai", } if not values["client"].schema.exists(values["index_name"]): values["client"].schema.create_class(class_obj) return values class Config: arbitrary_types_allowed = True # added text_key
[docs] def add_documents(self, docs: List[Document], **kwargs: Any) -> List[str]: """Upload documents to Weaviate.""" from weaviate.util import get_valid_uuid with self.client.batch as batch: ids = [] for i, doc in enumerate(docs): metadata = doc.metadata or {} data_properties = {self.text_key: doc.page_content, **metadata} # If the UUID of one of the objects already exists # then the existing objectwill be replaced by the new object. if "uuids" in kwargs: _id = kwargs["uuids"][i] else: _id = get_valid_uuid(uuid4()) batch.add_data_object(data_properties, self.index_name, _id) ids.append(_id) return ids
def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, where_filter: Optional[Dict[str, object]] = None, score: bool = False, hybrid_search_kwargs: Optional[Dict[str, object]] = None, ) -> List[Document]: """Look up similar documents in Weaviate. query: The query to search for relevant documents of using weviate hybrid search. where_filter: A filter to apply to the query. https://weaviate.io/developers/weaviate/guides/querying/#filtering score: Whether to include the score, and score explanation in the returned Documents meta_data. hybrid_search_kwargs: Used to pass additional arguments to the .with_hybrid() method. The primary uses cases for this are: 1) Search specific properties only - specify which properties to be used during hybrid search portion. Note: this is not the same as the (self.attributes) to be returned. Example - hybrid_search_kwargs={"properties": ["question", "answer"]} https://weaviate.io/developers/weaviate/search/hybrid#selected-properties-only 2) Weight boosted searched properties - Boost the weight of certain properties during the hybrid search portion. Example - hybrid_search_kwargs={"properties": ["question^2", "answer"]} https://weaviate.io/developers/weaviate/search/hybrid#weight-boost-searched-properties 3) Search with a custom vector - Define a different vector to be used during the hybrid search portion. Example - hybrid_search_kwargs={"vector": [0.1, 0.2, 0.3, ...]} https://weaviate.io/developers/weaviate/search/hybrid#with-a-custom-vector 4) Use Fusion ranking method Example - from weaviate.gql.get import HybridFusion hybrid_search_kwargs={"fusion": fusion_type=HybridFusion.RELATIVE_SCORE} https://weaviate.io/developers/weaviate/search/hybrid#fusion-ranking-method """ query_obj = self.client.query.get(self.index_name, self.attributes) if where_filter: query_obj = query_obj.with_where(where_filter) if score: query_obj = query_obj.with_additional(["score", "explainScore"]) if hybrid_search_kwargs is None: hybrid_search_kwargs = {} result = ( query_obj.with_hybrid(query, alpha=self.alpha, **hybrid_search_kwargs) .with_limit(self.k) .do() ) if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self.index_name]: text = res.pop(self.text_key) docs.append(Document(page_content=text, metadata=res)) return docs