"""A common module for NVIDIA Riva Runnables."""
import asyncio
import logging
import pathlib
import queue
import tempfile
import threading
import wave
from enum import Enum
from typing import (
TYPE_CHECKING,
Any,
AsyncGenerator,
AsyncIterator,
Dict,
Generator,
Iterator,
List,
Optional,
Tuple,
Union,
cast,
)
from langchain_core.messages import AnyMessage, BaseMessage
from langchain_core.prompt_values import PromptValue
from langchain_core.pydantic_v1 import (
AnyHttpUrl,
BaseModel,
Field,
parse_obj_as,
root_validator,
validator,
)
from langchain_core.runnables import RunnableConfig, RunnableSerializable
if TYPE_CHECKING:
import riva.client
import riva.client.proto.riva_asr_pb2 as rasr
_LOGGER = logging.getLogger(__name__)
_QUEUE_GET_TIMEOUT = 0.5
_MAX_TEXT_LENGTH = 400
_SENTENCE_TERMINATORS = ("\n", ".", "!", "?", "ยก", "ยฟ")
# COMMON utilities used by all Riva Runnables
def _import_riva_client() -> "riva.client":
"""Import the riva client and raise an error on failure."""
try:
# pylint: disable-next=import-outside-toplevel # this client library is optional
import riva.client
except ImportError as err:
raise ImportError(
"Could not import the NVIDIA Riva client library. "
"Please install it with `pip install nvidia-riva-client`."
) from err
return riva.client
[docs]class SentinelT: # pylint: disable=too-few-public-methods
"""An empty Sentinel type."""
HANGUP = SentinelT()
_TRANSFORM_END = SentinelT()
[docs]class RivaAudioEncoding(str, Enum):
"""An enum of the possible choices for Riva audio encoding.
The list of types exposed by the Riva GRPC Protobuf files can be found
with the following commands:
```python
import riva.client
print(riva.client.AudioEncoding.keys()) # noqa: T201
```
"""
ALAW = "ALAW"
ENCODING_UNSPECIFIED = "ENCODING_UNSPECIFIED"
FLAC = "FLAC"
LINEAR_PCM = "LINEAR_PCM"
MULAW = "MULAW"
OGGOPUS = "OGGOPUS"
@classmethod
def from_wave_format_code(cls, format_code: int) -> "RivaAudioEncoding":
"""Return the audio encoding specified by the format code in the wave file.
ref: https://mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
"""
try:
return {1: cls.LINEAR_PCM, 6: cls.ALAW, 7: cls.MULAW}[format_code]
except KeyError as err:
raise NotImplementedError(
"The following wave file format code is "
f"not supported by Riva: {format_code}"
) from err
@property
def riva_pb2(self) -> "riva.client.AudioEncoding":
"""Returns the Riva API object for the encoding."""
riva_client = _import_riva_client()
return getattr(riva_client.AudioEncoding, self)
[docs]class RivaAuthMixin(BaseModel):
"""Configuration for the authentication to a Riva service connection."""
url: Union[AnyHttpUrl, str] = Field(
AnyHttpUrl("http://localhost:50051", scheme="http"),
description="The full URL where the Riva service can be found.",
examples=["http://localhost:50051", "https://user@pass:riva.example.com"],
)
ssl_cert: Optional[str] = Field(
None,
description="A full path to the file where Riva's public ssl key can be read.",
)
@property
def auth(self) -> "riva.client.Auth":
"""Return a riva client auth object."""
riva_client = _import_riva_client()
url = cast(AnyHttpUrl, self.url)
use_ssl = url.scheme == "https" # pylint: disable=no-member # false positive
url_no_scheme = str(self.url).split("/")[2]
return riva_client.Auth(
ssl_cert=self.ssl_cert, use_ssl=use_ssl, uri=url_no_scheme
)
@validator("url", pre=True, allow_reuse=True)
@classmethod
def _validate_url(cls, val: Any) -> AnyHttpUrl:
"""Do some initial conversations for the URL before checking."""
if isinstance(val, str):
return cast(AnyHttpUrl, parse_obj_as(AnyHttpUrl, val))
return cast(AnyHttpUrl, val)
[docs]class RivaCommonConfigMixin(BaseModel):
"""A collection of common Riva settings."""
encoding: RivaAudioEncoding = Field(
default=RivaAudioEncoding.LINEAR_PCM,
description="The encoding on the audio stream.",
)
sample_rate_hertz: int = Field(
default=8000, description="The sample rate frequency of audio stream."
)
language_code: str = Field(
default="en-US",
description=(
"The [BCP-47 language code]"
"(https://www.rfc-editor.org/rfc/bcp/bcp47.txt) for "
"the target language."
),
)
class _Event:
"""A combined event that is threadsafe and async safe."""
_event: threading.Event
_aevent: asyncio.Event
def __init__(self) -> None:
"""Initialize the event."""
self._event = threading.Event()
self._aevent = asyncio.Event()
def set(self) -> None:
"""Set the event."""
self._event.set()
self._aevent.set()
def clear(self) -> None:
"""Set the event."""
self._event.clear()
self._aevent.clear()
def is_set(self) -> bool:
"""Indicate if the event is set."""
return self._event.is_set()
def wait(self) -> None:
"""Wait for the event to be set."""
self._event.wait()
async def async_wait(self) -> None:
"""Async wait for the event to be set."""
await self._aevent.wait()
def _mk_wave_file(
output_directory: Optional[str], sample_rate: float
) -> Tuple[Optional[str], Optional[wave.Wave_write]]:
"""Create a new wave file and return the wave write object and filename."""
if output_directory:
with tempfile.NamedTemporaryFile(
mode="bx", suffix=".wav", delete=False, dir=output_directory
) as f:
wav_file_name = f.name
wav_file = wave.open(wav_file_name, "wb")
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(sample_rate)
return (wav_file_name, wav_file)
return (None, None)
def _coerce_string(val: "TTSInputType") -> str:
"""Attempt to coerce the input value to a string.
This is particularly useful for converting LangChain message to strings.
"""
if isinstance(val, PromptValue):
return val.to_string()
if isinstance(val, BaseMessage):
return str(val.content)
return str(val)
def _process_chunks(inputs: Iterator["TTSInputType"]) -> Generator[str, None, None]:
"""Filter the input chunks are return strings ready for TTS."""
buffer = ""
for chunk in inputs:
chunk = _coerce_string(chunk)
# return the buffer if an end of sentence character is detected
for terminator in _SENTENCE_TERMINATORS:
while terminator in chunk:
last_sentence, chunk = chunk.split(terminator, 1)
yield buffer + last_sentence + terminator
buffer = ""
buffer += chunk
# return the buffer if is too long
if len(buffer) > _MAX_TEXT_LENGTH:
for idx in range(0, len(buffer), _MAX_TEXT_LENGTH):
yield buffer[idx : idx + 5]
buffer = ""
# return remaining buffer
if buffer:
yield buffer
# Riva AudioStream Type
StreamInputType = Union[bytes, SentinelT]
StreamOutputType = str
[docs]class AudioStream:
"""A message containing streaming audio."""
_put_lock: threading.Lock
_queue: queue.Queue
output: queue.Queue
hangup: _Event
user_talking: _Event
user_quiet: _Event
_worker: Optional[threading.Thread]
[docs] def __init__(self, maxsize: int = 0) -> None:
"""Initialize the queue."""
self._put_lock = threading.Lock()
self._queue = queue.Queue(maxsize=maxsize)
self.output = queue.Queue()
self.hangup = _Event()
self.user_quiet = _Event()
self.user_talking = _Event()
self._worker = None
def __iter__(self) -> Generator[bytes, None, None]:
"""Return an error."""
while True:
# get next item
try:
next_val = self._queue.get(True, _QUEUE_GET_TIMEOUT)
except queue.Empty:
continue
# hangup when requested
if next_val == HANGUP:
break
# yield next item
yield next_val
self._queue.task_done()
async def __aiter__(self) -> AsyncIterator[StreamInputType]:
"""Iterate through all items in the queue until HANGUP."""
while True:
# get next item
try:
next_val = await asyncio.get_event_loop().run_in_executor(
None, self._queue.get, True, _QUEUE_GET_TIMEOUT
)
except queue.Empty:
continue
# hangup when requested
if next_val == HANGUP:
break
# yield next item
yield next_val
self._queue.task_done()
@property
def hungup(self) -> bool:
"""Indicate if the audio stream has hungup."""
return self.hangup.is_set()
@property
def empty(self) -> bool:
"""Indicate in the input stream buffer is empty."""
return self._queue.empty()
@property
def complete(self) -> bool:
"""Indicate if the audio stream has hungup and been processed."""
input_done = self.hungup and self.empty
output_done = (
self._worker is not None
and not self._worker.is_alive()
and self.output.empty()
)
return input_done and output_done
@property
def running(self) -> bool:
"""Indicate if the ASR stream is running."""
if self._worker:
return self._worker.is_alive()
return False
[docs] def put(self, item: StreamInputType, timeout: Optional[int] = None) -> None:
"""Put a new item into the queue."""
with self._put_lock:
if self.hungup:
raise RuntimeError(
"The audio stream has already been hungup. Cannot put more data."
)
if item is HANGUP:
self.hangup.set()
self._queue.put(item, timeout=timeout)
[docs] async def aput(self, item: StreamInputType, timeout: Optional[int] = None) -> None:
"""Async put a new item into the queue."""
loop = asyncio.get_event_loop()
await asyncio.wait_for(loop.run_in_executor(None, self.put, item), timeout)
[docs] def close(self, timeout: Optional[int] = None) -> None:
"""Send the hangup signal."""
self.put(HANGUP, timeout)
[docs] async def aclose(self, timeout: Optional[int] = None) -> None:
"""Async send the hangup signal."""
await self.aput(HANGUP, timeout)
[docs] def register(self, responses: Iterator["rasr.StreamingRecognizeResponse"]) -> None:
"""Drain the responses from the provided iterator and put them into a queue."""
if self.running:
raise RuntimeError("An ASR instance has already been registered.")
has_started = threading.Barrier(2, timeout=5)
def worker() -> None:
"""Consume the ASR Generator."""
has_started.wait()
for response in responses:
if not response.results:
continue
for result in response.results:
if not result.alternatives:
continue
if result.is_final:
self.user_talking.clear()
self.user_quiet.set()
transcript = cast(str, result.alternatives[0].transcript)
self.output.put(transcript)
elif not self.user_talking.is_set():
self.user_talking.set()
self.user_quiet.clear()
self._worker = threading.Thread(target=worker)
self._worker.daemon = True
self._worker.start()
has_started.wait()
# RivaASR Runnable
ASRInputType = AudioStream
ASROutputType = str
[docs]class RivaASR(
RivaAuthMixin,
RivaCommonConfigMixin,
RunnableSerializable[ASRInputType, ASROutputType],
):
"""A runnable that performs Automatic Speech Recognition (ASR) using NVIDIA Riva."""
name: str = "nvidia_riva_asr"
description: str = (
"A Runnable for converting audio bytes to a string."
"This is useful for feeding an audio stream into a chain and"
"preprocessing that audio to create an LLM prompt."
)
# riva options
audio_channel_count: int = Field(
1, description="The number of audio channels in the input audio stream."
)
profanity_filter: bool = Field(
True,
description=(
"Controls whether or not Riva should attempt to filter "
"profanity out of the transcribed text."
),
)
enable_automatic_punctuation: bool = Field(
True,
description=(
"Controls whether Riva should attempt to correct "
"senetence puncuation in the transcribed text."
),
)
@root_validator(pre=True)
@classmethod
def _validate_environment(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Validate the Python environment and input arguments."""
_ = _import_riva_client()
return values
@property
def config(self) -> "riva.client.StreamingRecognitionConfig":
"""Create and return the riva config object."""
riva_client = _import_riva_client()
return riva_client.StreamingRecognitionConfig(
interim_results=True,
config=riva_client.RecognitionConfig(
encoding=self.encoding,
sample_rate_hertz=self.sample_rate_hertz,
audio_channel_count=self.audio_channel_count,
max_alternatives=1,
profanity_filter=self.profanity_filter,
enable_automatic_punctuation=self.enable_automatic_punctuation,
language_code=self.language_code,
),
)
def _get_service(self) -> "riva.client.ASRService":
"""Connect to the riva service and return the a client object."""
riva_client = _import_riva_client()
try:
return riva_client.ASRService(self.auth)
except Exception as err:
raise ValueError(
"Error raised while connecting to the Riva ASR server."
) from err
[docs] def invoke(
self,
input: ASRInputType,
_: Optional[RunnableConfig] = None,
) -> ASROutputType:
"""Transcribe the audio bytes into a string with Riva."""
# create an output text generator with Riva
if not input.running:
service = self._get_service()
responses = service.streaming_response_generator(
audio_chunks=input,
streaming_config=self.config,
)
input.register(responses)
# return the first valid result
full_response: List[str] = []
while not input.complete:
with input.output.not_empty:
ready = input.output.not_empty.wait(0.1)
if ready:
while not input.output.empty():
try:
full_response += [input.output.get_nowait()]
except queue.Empty:
continue
input.output.task_done()
_LOGGER.debug("Riva ASR returning: %s", repr(full_response))
return " ".join(full_response).strip()
return ""
# RivaTTS Runnable
# pylint: disable-next=invalid-name
TTSInputType = Union[str, AnyMessage, PromptValue]
TTSOutputType = bytes
[docs]class RivaTTS(
RivaAuthMixin,
RivaCommonConfigMixin,
RunnableSerializable[TTSInputType, TTSOutputType],
):
"""A runnable that performs Text-to-Speech (TTS) with NVIDIA Riva."""
name: str = "nvidia_riva_tts"
description: str = (
"A tool for converting text to speech."
"This is useful for converting LLM output into audio bytes."
)
# riva options
voice_name: str = Field(
"English-US.Female-1",
description=(
"The voice model in Riva to use for speech. "
"Pre-trained models are documented in "
"[the Riva documentation]"
"(https://docs.nvidia.com/deeplearning/riva/user-guide/docs/tts/tts-overview.html)."
),
)
output_directory: Optional[str] = Field(
None,
description=(
"The directory where all audio files should be saved. "
"A null value indicates that wave files should not be saved. "
"This is useful for debugging purposes."
),
)
@root_validator(pre=True)
@classmethod
def _validate_environment(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Validate the Python environment and input arguments."""
_ = _import_riva_client()
return values
@validator("output_directory")
@classmethod
def _output_directory_validator(cls, v: str) -> str:
if v:
dirpath = pathlib.Path(v)
dirpath.mkdir(parents=True, exist_ok=True)
return str(dirpath.absolute())
return v
def _get_service(self) -> "riva.client.SpeechSynthesisService":
"""Connect to the riva service and return the a client object."""
riva_client = _import_riva_client()
try:
return riva_client.SpeechSynthesisService(self.auth)
except Exception as err:
raise ValueError(
"Error raised while connecting to the Riva TTS server."
) from err
[docs] def invoke(
self, input: TTSInputType, _: Union[RunnableConfig, None] = None
) -> TTSOutputType:
"""Perform TTS by taking a string and outputting the entire audio file."""
return b"".join(self.transform(iter([input])))
def transform(
self,
input: Iterator[TTSInputType],
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> Iterator[TTSOutputType]:
"""Perform TTS by taking a stream of characters and streaming output bytes."""
service = self._get_service()
# create an output wave file
wav_file_name, wav_file = _mk_wave_file(
self.output_directory, self.sample_rate_hertz
)
# split the input text and perform tts
for chunk in _process_chunks(input):
_LOGGER.debug("Riva TTS chunk: %s", chunk)
# start riva tts streaming
responses = service.synthesize_online(
text=chunk,
voice_name=self.voice_name,
language_code=self.language_code,
encoding=self.encoding.riva_pb2,
sample_rate_hz=self.sample_rate_hertz,
)
# stream audio bytes out
for resp in responses:
audio = cast(bytes, resp.audio)
if wav_file:
wav_file.writeframesraw(audio)
yield audio
# close the wave file when we are done
if wav_file:
wav_file.close()
_LOGGER.debug("Riva TTS wrote file: %s", wav_file_name)
async def atransform(
self,
input: AsyncIterator[TTSInputType],
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> AsyncGenerator[TTSOutputType, None]:
"""Intercept async transforms and route them to the synchronous transform."""
loop = asyncio.get_running_loop()
input_queue: queue.Queue = queue.Queue()
out_queue: asyncio.Queue = asyncio.Queue()
async def _producer() -> None:
"""Produce input into the input queue."""
async for val in input:
input_queue.put_nowait(val)
input_queue.put_nowait(_TRANSFORM_END)
def _input_iterator() -> Iterator[TTSInputType]:
"""Iterate over the input_queue."""
while True:
try:
val = input_queue.get(timeout=0.5)
except queue.Empty:
continue
if val == _TRANSFORM_END:
break
yield val
def _consumer() -> None:
"""Consume the input with transform."""
for val in self.transform(_input_iterator()):
out_queue.put_nowait(val)
out_queue.put_nowait(_TRANSFORM_END)
async def _consumer_coro() -> None:
"""Coroutine that wraps the consumer."""
await loop.run_in_executor(None, _consumer)
producer = loop.create_task(_producer())
consumer = loop.create_task(_consumer_coro())
while True:
try:
val = await asyncio.wait_for(out_queue.get(), 0.5)
except asyncio.exceptions.TimeoutError:
continue
out_queue.task_done()
if val is _TRANSFORM_END:
break
yield val
await producer
await consumer
# Backwards compatibility:
NVIDIARivaASR = RivaASR
NVIDIARivaTTS = RivaTTS
NVIDIARivaStream = AudioStream