from __future__ import annotations
import logging
import uuid
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Set, Tuple, Type
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
from langchain_community.vectorstores.utils import maximal_marginal_relevance
if TYPE_CHECKING:
import awadb
logger = logging.getLogger()
DEFAULT_TOPN = 4
[docs]class AwaDB(VectorStore):
"""`AwaDB` vector store."""
_DEFAULT_TABLE_NAME: str = "langchain_awadb"
[docs] def __init__(
self,
table_name: str = _DEFAULT_TABLE_NAME,
embedding: Optional[Embeddings] = None,
log_and_data_dir: Optional[str] = None,
client: Optional[awadb.Client] = None,
**kwargs: Any,
) -> None:
"""Initialize with AwaDB client.
If table_name is not specified,
a random table name of `_DEFAULT_TABLE_NAME + last segment of uuid`
would be created automatically.
Args:
table_name: Name of the table created, default _DEFAULT_TABLE_NAME.
embedding: Optional Embeddings initially set.
log_and_data_dir: Optional the root directory of log and data.
client: Optional AwaDB client.
kwargs: Any possible extend parameters in the future.
Returns:
None.
"""
try:
import awadb
except ImportError:
raise ImportError(
"Could not import awadb python package. "
"Please install it with `pip install awadb`."
)
if client is not None:
self.awadb_client = client
else:
if log_and_data_dir is not None:
self.awadb_client = awadb.Client(log_and_data_dir)
else:
self.awadb_client = awadb.Client()
if table_name == self._DEFAULT_TABLE_NAME:
table_name += "_"
table_name += str(uuid.uuid4()).split("-")[-1]
self.awadb_client.Create(table_name)
self.table2embeddings: dict[str, Embeddings] = {}
if embedding is not None:
self.table2embeddings[table_name] = embedding
self.using_table_name = table_name
@property
def embeddings(self) -> Optional[Embeddings]:
if self.using_table_name in self.table2embeddings:
return self.table2embeddings[self.using_table_name]
return None
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
is_duplicate_texts: Optional[bool] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
is_duplicate_texts: Optional whether to duplicate texts. Defaults to True.
kwargs: any possible extend parameters in the future.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if self.awadb_client is None:
raise ValueError("AwaDB client is None!!!")
embeddings = None
if self.using_table_name in self.table2embeddings:
embeddings = self.table2embeddings[self.using_table_name].embed_documents(
list(texts)
)
return self.awadb_client.AddTexts(
"embedding_text",
"text_embedding",
texts,
embeddings,
metadatas,
is_duplicate_texts,
)
[docs] def load_local(
self,
table_name: str,
**kwargs: Any,
) -> bool:
"""Load the local specified table.
Args:
table_name: Table name
kwargs: Any possible extend parameters in the future.
Returns:
Success or failure of loading the local specified table
"""
if self.awadb_client is None:
raise ValueError("AwaDB client is None!!!")
return self.awadb_client.Load(table_name)
[docs] def similarity_search(
self,
query: str,
k: int = DEFAULT_TOPN,
text_in_page_content: Optional[str] = None,
meta_filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text query.
k: The maximum number of documents to return.
text_in_page_content: Filter by the text in page_content of Document.
meta_filter (Optional[dict]): Filter by metadata. Defaults to None.
E.g. `{"color" : "red", "price": 4.20}`. Optional.
E.g. `{"max_price" : 15.66, "min_price": 4.20}`
`price` is the metadata field, means range filter(4.20<'price'<15.66).
E.g. `{"maxe_price" : 15.66, "mine_price": 4.20}`
`price` is the metadata field, means range filter(4.20<='price'<=15.66).
kwargs: Any possible extend parameters in the future.
Returns:
Returns the k most similar documents to the specified text query.
"""
if self.awadb_client is None:
raise ValueError("AwaDB client is None!!!")
embedding = None
if self.using_table_name in self.table2embeddings:
embedding = self.table2embeddings[self.using_table_name].embed_query(query)
else:
from awadb import AwaEmbedding
embedding = AwaEmbedding().Embedding(query)
not_include_fields: Set[str] = {"text_embedding", "_id", "score"}
return self.similarity_search_by_vector(
embedding,
k,
text_in_page_content=text_in_page_content,
meta_filter=meta_filter,
not_include_fields_in_metadata=not_include_fields,
)
[docs] def similarity_search_with_score(
self,
query: str,
k: int = DEFAULT_TOPN,
text_in_page_content: Optional[str] = None,
meta_filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""The most k similar documents and scores of the specified query.
Args:
query: Text query.
k: The k most similar documents to the text query.
text_in_page_content: Filter by the text in page_content of Document.
meta_filter: Filter by metadata. Defaults to None.
kwargs: Any possible extend parameters in the future.
Returns:
The k most similar documents to the specified text query.
0 is dissimilar, 1 is the most similar.
"""
if self.awadb_client is None:
raise ValueError("AwaDB client is None!!!")
embedding = None
if self.using_table_name in self.table2embeddings:
embedding = self.table2embeddings[self.using_table_name].embed_query(query)
else:
from awadb import AwaEmbedding
embedding = AwaEmbedding().Embedding(query)
results: List[Tuple[Document, float]] = []
not_include_fields: Set[str] = {"text_embedding", "_id"}
retrieval_docs = self.similarity_search_by_vector(
embedding,
k,
text_in_page_content=text_in_page_content,
meta_filter=meta_filter,
not_include_fields_in_metadata=not_include_fields,
)
for doc in retrieval_docs:
score = doc.metadata["score"]
del doc.metadata["score"]
doc_tuple = (doc, score)
results.append(doc_tuple)
return results
def _similarity_search_with_relevance_scores(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
return self.similarity_search_with_score(query, k, **kwargs)
[docs] def similarity_search_by_vector(
self,
embedding: Optional[List[float]] = None,
k: int = DEFAULT_TOPN,
text_in_page_content: Optional[str] = None,
meta_filter: Optional[dict] = None,
not_include_fields_in_metadata: Optional[Set[str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
text_in_page_content: Filter by the text in page_content of Document.
meta_filter: Filter by metadata. Defaults to None.
not_incude_fields_in_metadata: Not include meta fields of each document.
Returns:
List of Documents which are the most similar to the query vector.
"""
if self.awadb_client is None:
raise ValueError("AwaDB client is None!!!")
results: List[Document] = []
if embedding is None:
return results
show_results = self.awadb_client.Search(
embedding,
k,
text_in_page_content=text_in_page_content,
meta_filter=meta_filter,
not_include_fields=not_include_fields_in_metadata,
)
if show_results.__len__() == 0:
return results
for item_detail in show_results[0]["ResultItems"]:
content = ""
meta_data = {}
for item_key in item_detail:
if item_key == "embedding_text":
content = item_detail[item_key]
continue
elif not_include_fields_in_metadata is not None:
if item_key in not_include_fields_in_metadata:
continue
meta_data[item_key] = item_detail[item_key]
results.append(Document(page_content=content, metadata=meta_data))
return results
[docs] def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
text_in_page_content: Optional[str] = None,
meta_filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
text_in_page_content: Filter by the text in page_content of Document.
meta_filter (Optional[dict]): Filter by metadata. Defaults to None.
Returns:
List of Documents selected by maximal marginal relevance.
"""
if self.awadb_client is None:
raise ValueError("AwaDB client is None!!!")
embedding: List[float] = []
if self.using_table_name in self.table2embeddings:
embedding = self.table2embeddings[self.using_table_name].embed_query(query)
else:
from awadb import AwaEmbedding
embedding = AwaEmbedding().Embedding(query)
if embedding.__len__() == 0:
return []
results = self.max_marginal_relevance_search_by_vector(
embedding,
k,
fetch_k,
lambda_mult=lambda_mult,
text_in_page_content=text_in_page_content,
meta_filter=meta_filter,
)
return results
[docs] def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
text_in_page_content: Optional[str] = None,
meta_filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
text_in_page_content: Filter by the text in page_content of Document.
meta_filter (Optional[dict]): Filter by metadata. Defaults to None.
Returns:
List of Documents selected by maximal marginal relevance.
"""
if self.awadb_client is None:
raise ValueError("AwaDB client is None!!!")
results: List[Document] = []
if embedding is None:
return results
not_include_fields: set = {"_id", "score"}
retrieved_docs = self.similarity_search_by_vector(
embedding,
fetch_k,
text_in_page_content=text_in_page_content,
meta_filter=meta_filter,
not_include_fields_in_metadata=not_include_fields,
)
top_embeddings = []
for doc in retrieved_docs:
top_embeddings.append(doc.metadata["text_embedding"])
selected_docs = maximal_marginal_relevance(
np.array(embedding, dtype=np.float32), embedding_list=top_embeddings
)
for s_id in selected_docs:
if "text_embedding" in retrieved_docs[s_id].metadata:
del retrieved_docs[s_id].metadata["text_embedding"]
results.append(retrieved_docs[s_id])
return results
[docs] def get(
self,
ids: Optional[List[str]] = None,
text_in_page_content: Optional[str] = None,
meta_filter: Optional[dict] = None,
not_include_fields: Optional[Set[str]] = None,
limit: Optional[int] = None,
**kwargs: Any,
) -> Dict[str, Document]:
"""Return docs according ids.
Args:
ids: The ids of the embedding vectors.
text_in_page_content: Filter by the text in page_content of Document.
meta_filter: Filter by any metadata of the document.
not_include_fields: Not pack the specified fields of each document.
limit: The number of documents to return. Defaults to 5. Optional.
Returns:
Documents which satisfy the input conditions.
"""
if self.awadb_client is None:
raise ValueError("AwaDB client is None!!!")
docs_detail = self.awadb_client.Get(
ids=ids,
text_in_page_content=text_in_page_content,
meta_filter=meta_filter,
not_include_fields=not_include_fields,
limit=limit,
)
results: Dict[str, Document] = {}
for doc_detail in docs_detail:
content = ""
meta_info = {}
for field in doc_detail:
if field == "embedding_text":
content = doc_detail[field]
continue
elif field == "text_embedding" or field == "_id":
continue
meta_info[field] = doc_detail[field]
doc = Document(page_content=content, metadata=meta_info)
results[doc_detail["_id"]] = doc
return results
[docs] def delete(
self,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> Optional[bool]:
"""Delete the documents which have the specified ids.
Args:
ids: The ids of the embedding vectors.
**kwargs: Other keyword arguments that subclasses might use.
Returns:
Optional[bool]: True if deletion is successful.
False otherwise, None if not implemented.
"""
if self.awadb_client is None:
raise ValueError("AwaDB client is None!!!")
ret: Optional[bool] = None
if ids is None or ids.__len__() == 0:
return ret
ret = self.awadb_client.Delete(ids)
return ret
[docs] def update(
self,
ids: List[str],
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Update the documents which have the specified ids.
Args:
ids: The id list of the updating embedding vector.
texts: The texts of the updating documents.
metadatas: The metadatas of the updating documents.
Returns:
the ids of the updated documents.
"""
if self.awadb_client is None:
raise ValueError("AwaDB client is None!!!")
return self.awadb_client.UpdateTexts(
ids=ids, text_field_name="embedding_text", texts=texts, metadatas=metadatas
)
[docs] def create_table(
self,
table_name: str,
**kwargs: Any,
) -> bool:
"""Create a new table."""
if self.awadb_client is None:
return False
ret = self.awadb_client.Create(table_name)
if ret:
self.using_table_name = table_name
return ret
[docs] def use(
self,
table_name: str,
**kwargs: Any,
) -> bool:
"""Use the specified table. Don't know the tables, please invoke list_tables."""
if self.awadb_client is None:
return False
ret = self.awadb_client.Use(table_name)
if ret:
self.using_table_name = table_name
return ret
[docs] def list_tables(
self,
**kwargs: Any,
) -> List[str]:
"""List all the tables created by the client."""
if self.awadb_client is None:
return []
return self.awadb_client.ListAllTables()
[docs] def get_current_table(
self,
**kwargs: Any,
) -> str:
"""Get the current table."""
return self.using_table_name
[docs] @classmethod
def from_texts(
cls: Type[AwaDB],
texts: List[str],
embedding: Optional[Embeddings] = None,
metadatas: Optional[List[dict]] = None,
table_name: str = _DEFAULT_TABLE_NAME,
log_and_data_dir: Optional[str] = None,
client: Optional[awadb.Client] = None,
**kwargs: Any,
) -> AwaDB:
"""Create an AwaDB vectorstore from a raw documents.
Args:
texts (List[str]): List of texts to add to the table.
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
table_name (str): Name of the table to create.
log_and_data_dir (Optional[str]): Directory of logging and persistence.
client (Optional[awadb.Client]): AwaDB client
Returns:
AwaDB: AwaDB vectorstore.
"""
awadb_client = cls(
table_name=table_name,
embedding=embedding,
log_and_data_dir=log_and_data_dir,
client=client,
)
awadb_client.add_texts(texts=texts, metadatas=metadatas)
return awadb_client
[docs] @classmethod
def from_documents(
cls: Type[AwaDB],
documents: List[Document],
embedding: Optional[Embeddings] = None,
table_name: str = _DEFAULT_TABLE_NAME,
log_and_data_dir: Optional[str] = None,
client: Optional[awadb.Client] = None,
**kwargs: Any,
) -> AwaDB:
"""Create an AwaDB vectorstore from a list of documents.
If a log_and_data_dir specified, the table will be persisted there.
Args:
documents (List[Document]): List of documents to add to the vectorstore.
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
table_name (str): Name of the table to create.
log_and_data_dir (Optional[str]): Directory to persist the table.
client (Optional[awadb.Client]): AwaDB client.
Any: Any possible parameters in the future
Returns:
AwaDB: AwaDB vectorstore.
"""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return cls.from_texts(
texts=texts,
embedding=embedding,
metadatas=metadatas,
table_name=table_name,
log_and_data_dir=log_and_data_dir,
client=client,
)