from __future__ import annotations
import logging
from enum import Enum
from typing import (
TYPE_CHECKING,
Any,
Dict,
Generator,
Iterable,
List,
Optional,
TypeVar,
Union,
)
from langchain_core.documents import Document
from langchain_core.vectorstores import VectorStore
if TYPE_CHECKING:
from langchain_core.embeddings import Embeddings
from pymongo.collection import Collection
# Before Python 3.11 native StrEnum is not available
[docs]class DocumentDBSimilarityType(str, Enum):
"""DocumentDB Similarity Type as enumerator."""
COS = "cosine"
"""Cosine similarity"""
DOT = "dotProduct"
"""Dot product"""
EUC = "euclidean"
"""Euclidean distance"""
DocumentDBDocumentType = TypeVar("DocumentDBDocumentType", bound=Dict[str, Any])
logger = logging.getLogger(__name__)
DEFAULT_INSERT_BATCH_SIZE = 128
[docs]class DocumentDBVectorSearch(VectorStore):
"""`Amazon DocumentDB (with MongoDB compatibility)` vector store.
Please refer to the official Vector Search documentation for more details:
https://docs.aws.amazon.com/documentdb/latest/developerguide/vector-search.html
To use, you should have both:
- the ``pymongo`` python package installed
- a connection string and credentials associated with a DocumentDB cluster
Example:
. code-block:: python
from langchain_community.vectorstores import DocumentDBVectorSearch
from langchain_community.embeddings.openai import OpenAIEmbeddings
from pymongo import MongoClient
mongo_client = MongoClient("<YOUR-CONNECTION-STRING>")
collection = mongo_client["<db_name>"]["<collection_name>"]
embeddings = OpenAIEmbeddings()
vectorstore = DocumentDBVectorSearch(collection, embeddings)
"""
[docs] def __init__(
self,
collection: Collection[DocumentDBDocumentType],
embedding: Embeddings,
*,
index_name: str = "vectorSearchIndex",
text_key: str = "textContent",
embedding_key: str = "vectorContent",
):
"""Constructor for DocumentDBVectorSearch
Args:
collection: MongoDB collection to add the texts to.
embedding: Text embedding model to use.
index_name: Name of the Vector Search index.
text_key: MongoDB field that will contain the text
for each document.
embedding_key: MongoDB field that will contain the embedding
for each document.
"""
self._collection = collection
self._embedding = embedding
self._index_name = index_name
self._text_key = text_key
self._embedding_key = embedding_key
self._similarity_type = DocumentDBSimilarityType.COS
@property
def embeddings(self) -> Embeddings:
return self._embedding
[docs] def get_index_name(self) -> str:
"""Returns the index name
Returns:
Returns the index name
"""
return self._index_name
[docs] @classmethod
def from_connection_string(
cls,
connection_string: str,
namespace: str,
embedding: Embeddings,
**kwargs: Any,
) -> DocumentDBVectorSearch:
"""Creates an Instance of DocumentDBVectorSearch from a Connection String
Args:
connection_string: The DocumentDB cluster endpoint connection string
namespace: The namespace (database.collection)
embedding: The embedding utility
**kwargs: Dynamic keyword arguments
Returns:
an instance of the vector store
"""
try:
from pymongo import MongoClient
except ImportError:
raise ImportError(
"Could not import pymongo, please install it with "
"`pip install pymongo`."
)
client: MongoClient = MongoClient(connection_string)
db_name, collection_name = namespace.split(".")
collection = client[db_name][collection_name]
return cls(collection, embedding, **kwargs)
[docs] def index_exists(self) -> bool:
"""Verifies if the specified index name during instance
construction exists on the collection
Returns:
Returns True on success and False if no such index exists
on the collection
"""
cursor = self._collection.list_indexes()
index_name = self._index_name
for res in cursor:
current_index_name = res.pop("name")
if current_index_name == index_name:
return True
return False
[docs] def delete_index(self) -> None:
"""Deletes the index specified during instance construction if it exists"""
if self.index_exists():
self._collection.drop_index(self._index_name)
# Raises OperationFailure on an error (e.g. trying to drop
# an index that does not exist)
[docs] def create_index(
self,
dimensions: int = 1536,
similarity: DocumentDBSimilarityType = DocumentDBSimilarityType.COS,
m: int = 16,
ef_construction: int = 64,
) -> dict[str, Any]:
"""Creates an index using the index name specified at
instance construction
Args:
dimensions: Number of dimensions for vector similarity.
The maximum number of supported dimensions is 2000
similarity: Similarity algorithm to use with the HNSW index.
Possible options are:
- DocumentDBSimilarityType.COS (cosine distance),
- DocumentDBSimilarityType.EUC (Euclidean distance), and
- DocumentDBSimilarityType.DOT (dot product).
m: Specifies the max number of connections for an HNSW index.
Large impact on memory consumption.
ef_construction: Specifies the size of the dynamic candidate list
for constructing the graph for HNSW index. Higher values lead
to more accurate results but slower indexing speed.
Returns:
An object describing the created index
"""
self._similarity_type = similarity
# prepare the command
create_index_commands = {
"createIndexes": self._collection.name,
"indexes": [
{
"name": self._index_name,
"key": {self._embedding_key: "vector"},
"vectorOptions": {
"type": "hnsw",
"similarity": similarity,
"dimensions": dimensions,
"m": m,
"efConstruction": ef_construction,
},
}
],
}
# retrieve the database object
current_database = self._collection.database
# invoke the command from the database object
create_index_responses: dict[str, Any] = current_database.command(
create_index_commands
)
return create_index_responses
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[Dict[str, Any]]] = None,
**kwargs: Any,
) -> List:
batch_size = kwargs.get("batch_size", DEFAULT_INSERT_BATCH_SIZE)
_metadatas: Union[List, Generator] = metadatas or ({} for _ in texts)
texts_batch = []
metadatas_batch = []
result_ids = []
for i, (text, metadata) in enumerate(zip(texts, _metadatas)):
texts_batch.append(text)
metadatas_batch.append(metadata)
if (i + 1) % batch_size == 0:
result_ids.extend(self._insert_texts(texts_batch, metadatas_batch))
texts_batch = []
metadatas_batch = []
if texts_batch:
result_ids.extend(self._insert_texts(texts_batch, metadatas_batch))
return result_ids
def _insert_texts(self, texts: List[str], metadatas: List[Dict[str, Any]]) -> List:
"""Used to Load Documents into the collection
Args:
texts: The list of documents strings to load
metadatas: The list of metadata objects associated with each document
Returns:
"""
# If the text is empty, then exit early
if not texts:
return []
# Embed and create the documents
embeddings = self._embedding.embed_documents(texts)
to_insert = [
{self._text_key: t, self._embedding_key: embedding, **m}
for t, m, embedding in zip(texts, metadatas, embeddings)
]
# insert the documents in DocumentDB
insert_result = self._collection.insert_many(to_insert) # type: ignore
return insert_result.inserted_ids
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
collection: Optional[Collection[DocumentDBDocumentType]] = None,
**kwargs: Any,
) -> DocumentDBVectorSearch:
if collection is None:
raise ValueError("Must provide 'collection' named parameter.")
vectorstore = cls(collection, embedding, **kwargs)
vectorstore.add_texts(texts, metadatas=metadatas)
return vectorstore
[docs] def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
if ids is None:
raise ValueError("No document ids provided to delete.")
for document_id in ids:
self.delete_document_by_id(document_id)
return True
[docs] def delete_document_by_id(self, document_id: Optional[str] = None) -> None:
"""Removes a Specific Document by Id
Args:
document_id: The document identifier
"""
try:
from bson.objectid import ObjectId
except ImportError as e:
raise ImportError(
"Unable to import bson, please install with `pip install bson`."
) from e
if document_id is None:
raise ValueError("No document id provided to delete.")
self._collection.delete_one({"_id": ObjectId(document_id)})
def _similarity_search_without_score(
self,
embeddings: List[float],
k: int = 4,
ef_search: int = 40,
filter: Optional[Dict[str, Any]] = None,
) -> List[Document]:
"""Returns a list of documents.
Args:
embeddings: The query vector
k: the number of documents to return
ef_search: Specifies the size of the dynamic candidate list
that HNSW index uses during search. A higher value of
efSearch provides better recall at cost of speed.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
A list of documents closest to the query vector
"""
# $match can't be null, so intializes to {} when None to avoid
# "the match filter must be an expression in an object"
if not filter:
filter = {}
pipeline: List[dict[str, Any]] = [
{"$match": filter},
{
"$search": {
"vectorSearch": {
"vector": embeddings,
"path": self._embedding_key,
"similarity": self._similarity_type,
"k": k,
"efSearch": ef_search,
}
},
},
]
cursor = self._collection.aggregate(pipeline)
docs = []
for res in cursor:
text = res.pop(self._text_key)
docs.append(Document(page_content=text, metadata=res))
return docs
[docs] def similarity_search(
self,
query: str,
k: int = 4,
ef_search: int = 40,
*,
filter: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> List[Document]:
embeddings = self._embedding.embed_query(query)
docs = self._similarity_search_without_score(
embeddings=embeddings, k=k, ef_search=ef_search, filter=filter
)
return [doc for doc in docs]