Source code for langchain_community.vectorstores.lancedb

from __future__ import annotations

import base64
import os
import uuid
import warnings
from typing import Any, Callable, Dict, Iterable, List, Optional, Type

import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.utils import guard_import
from langchain_core.vectorstores import VectorStore

from langchain_community.vectorstores.utils import maximal_marginal_relevance

DEFAULT_K = 4  # Number of Documents to return.


[docs]def import_lancedb() -> Any: """Import lancedb package.""" return guard_import("lancedb")
[docs]def to_lance_filter(filter: Dict[str, str]) -> str: """Converts a dict filter to a LanceDB filter string.""" return " AND ".join([f"{k} = '{v}'" for k, v in filter.items()])
[docs]class LanceDB(VectorStore): """`LanceDB` vector store. To use, you should have ``lancedb`` python package installed. You can install it with ``pip install lancedb``. Args: connection: LanceDB connection to use. If not provided, a new connection will be created. embedding: Embedding to use for the vectorstore. vector_key: Key to use for the vector in the database. Defaults to ``vector``. id_key: Key to use for the id in the database. Defaults to ``id``. text_key: Key to use for the text in the database. Defaults to ``text``. table_name: Name of the table to use. Defaults to ``vectorstore``. api_key: API key to use for LanceDB cloud database. region: Region to use for LanceDB cloud database. mode: Mode to use for adding data to the table. Defaults to ``overwrite``. Example: .. code-block:: python vectorstore = LanceDB(uri='/lancedb', embedding_function) vectorstore.add_texts(['text1', 'text2']) result = vectorstore.similarity_search('text1') """
[docs] def __init__( self, connection: Optional[Any] = None, embedding: Optional[Embeddings] = None, uri: Optional[str] = "/tmp/lancedb", vector_key: Optional[str] = "vector", id_key: Optional[str] = "id", text_key: Optional[str] = "text", table_name: Optional[str] = "vectorstore", api_key: Optional[str] = None, region: Optional[str] = None, mode: Optional[str] = "overwrite", table: Optional[Any] = None, distance: Optional[str] = "l2", reranker: Optional[Any] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, limit: int = DEFAULT_K, ): """Initialize with Lance DB vectorstore""" lancedb = guard_import("lancedb") self._embedding = embedding self._vector_key = vector_key self._id_key = id_key self._text_key = text_key self.api_key = api_key or os.getenv("LANCE_API_KEY") if api_key != "" else None self.region = region self.mode = mode self.distance = distance self.override_relevance_score_fn = relevance_score_fn self.limit = limit self._fts_index = None if isinstance(reranker, lancedb.rerankers.Reranker): self._reranker = reranker elif reranker is None: self._reranker = None else: raise ValueError( "`reranker` has to be a lancedb.rerankers.Reranker object." ) if isinstance(uri, str) and self.api_key is None: if uri.startswith("db://"): raise ValueError("API key is required for LanceDB cloud.") if self._embedding is None: raise ValueError("embedding object should be provided") if isinstance(connection, lancedb.db.LanceDBConnection): self._connection = connection elif isinstance(connection, (str, lancedb.db.LanceTable)): raise ValueError( "`connection` has to be a lancedb.db.LanceDBConnection object.\ `lancedb.db.LanceTable` is deprecated." ) else: if self.api_key is None: self._connection = lancedb.connect(uri) else: if isinstance(uri, str): if uri.startswith("db://"): self._connection = lancedb.connect( uri, api_key=self.api_key, region=self.region ) else: self._connection = lancedb.connect(uri) warnings.warn( "api key provided with local uri.\ The data will be stored locally" ) if table is not None: try: assert isinstance( table, (lancedb.db.LanceTable, lancedb.remote.table.RemoteTable) ) self._table = table self._table_name = ( table.name if hasattr(table, "name") else "remote_table" ) except AssertionError: raise ValueError( """`table` has to be a lancedb.db.LanceTable or lancedb.remote.table.RemoteTable object.""" ) else: self._table = self.get_table(table_name, set_default=True)
[docs] def results_to_docs(self, results: Any, score: bool = False) -> Any: columns = results.schema.names if "_distance" in columns: score_col = "_distance" elif "_relevance_score" in columns: score_col = "_relevance_score" else: score_col = None if score_col is None or not score: return [ Document( page_content=results[self._text_key][idx].as_py(), metadata=results["metadata"][idx].as_py(), ) for idx in range(len(results)) ] elif score_col and score: return [ ( Document( page_content=results[self._text_key][idx].as_py(), metadata=results["metadata"][idx].as_py(), ), results[score_col][idx].as_py(), ) for idx in range(len(results)) ]
@property def embeddings(self) -> Optional[Embeddings]: return self._embedding
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Turn texts into embedding and add it to the database Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. ids: Optional list of ids to associate with the texts. Returns: List of ids of the added texts. """ docs = [] ids = ids or [str(uuid.uuid4()) for _ in texts] embeddings = self._embedding.embed_documents(list(texts)) # type: ignore for idx, text in enumerate(texts): embedding = embeddings[idx] metadata = metadatas[idx] if metadatas else {"id": ids[idx]} docs.append( { self._vector_key: embedding, self._id_key: ids[idx], self._text_key: text, "metadata": metadata, } ) tbl = self.get_table() if tbl is None: tbl = self._connection.create_table(self._table_name, data=docs) self._table = tbl else: if self.api_key is None: tbl.add(docs, mode=self.mode) else: tbl.add(docs) self._fts_index = None return ids
[docs] def get_table( self, name: Optional[str] = None, set_default: Optional[bool] = False ) -> Any: """ Fetches a table object from the database. Args: name (str, optional): The name of the table to fetch. Defaults to None and fetches current table object. set_default (bool, optional): Sets fetched table as the default table. Defaults to False. Returns: Any: The fetched table object. Raises: ValueError: If the specified table is not found in the database. """ if name is not None: if set_default: self._table_name = name _name = self._table_name else: _name = name else: _name = self._table_name try: return self._connection.open_table(_name) except Exception: return None
[docs] def create_index( self, col_name: Optional[str] = None, vector_col: Optional[str] = None, num_partitions: Optional[int] = 256, num_sub_vectors: Optional[int] = 96, index_cache_size: Optional[int] = None, metric: Optional[str] = "L2", name: Optional[str] = None, ) -> None: """ Create a scalar(for non-vector cols) or a vector index on a table. Make sure your vector column has enough data before creating an index on it. Args: vector_col: Provide if you want to create index on a vector column. col_name: Provide if you want to create index on a non-vector column. metric: Provide the metric to use for vector index. Defaults to 'L2' choice of metrics: 'L2', 'dot', 'cosine' num_partitions: Number of partitions to use for the index. Defaults to 256. num_sub_vectors: Number of sub-vectors to use for the index. Defaults to 96. index_cache_size: Size of the index cache. Defaults to None. name: Name of the table to create index on. Defaults to None. Returns: None """ tbl = self.get_table(name) if vector_col: tbl.create_index( metric=metric, vector_column_name=vector_col, num_partitions=num_partitions, num_sub_vectors=num_sub_vectors, index_cache_size=index_cache_size, ) elif col_name: tbl.create_scalar_index(col_name) else: raise ValueError("Provide either vector_col or col_name")
[docs] def encode_image(self, uri: str) -> str: """Get base64 string from image URI.""" with open(uri, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8")
[docs] def add_images( self, uris: List[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more images through the embeddings and add to the vectorstore. Args: uris List[str]: File path to the image. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added images. """ tbl = self.get_table() # Map from uris to b64 encoded strings b64_texts = [self.encode_image(uri=uri) for uri in uris] # Populate IDs if ids is None: ids = [str(uuid.uuid4()) for _ in uris] embeddings = None # Set embeddings if self._embedding is not None and hasattr(self._embedding, "embed_image"): embeddings = self._embedding.embed_image(uris=uris) else: raise ValueError( "embedding object should be provided and must have embed_image method." ) data = [] for idx, emb in enumerate(embeddings): metadata = metadatas[idx] if metadatas else {"id": ids[idx]} data.append( { self._vector_key: emb, self._id_key: ids[idx], self._text_key: b64_texts[idx], "metadata": metadata, } ) if tbl is None: tbl = self._connection.create_table(self._table_name, data=data) self._table = tbl else: tbl.add(data) return ids
def _query( self, query: Any, k: Optional[int] = None, filter: Optional[Any] = None, name: Optional[str] = None, **kwargs: Any, ) -> Any: if k is None: k = self.limit tbl = self.get_table(name) if isinstance(filter, dict): filter = to_lance_filter(filter) prefilter = kwargs.get("prefilter", False) query_type = kwargs.get("query_type", "vector") if metrics := kwargs.get("metrics"): lance_query = ( tbl.search(query=query, vector_column_name=self._vector_key) .limit(k) .metric(metrics) .where(filter, prefilter=prefilter) ) else: lance_query = ( tbl.search(query=query, vector_column_name=self._vector_key) .limit(k) .where(filter, prefilter=prefilter) ) if query_type == "hybrid" and self._reranker is not None: lance_query.rerank(reranker=self._reranker) docs = lance_query.to_arrow() if len(docs) == 0: warnings.warn("No results found for the query.") return docs def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.override_relevance_score_fn: return self.override_relevance_score_fn if self.distance == "cosine": return self._cosine_relevance_score_fn elif self.distance == "l2": return self._euclidean_relevance_score_fn elif self.distance == "ip": return self._max_inner_product_relevance_score_fn else: raise ValueError( "No supported normalization function" f" for distance metric of type: {self.distance}." "Consider providing relevance_score_fn to Chroma constructor." )
[docs] def similarity_search_by_vector( self, embedding: List[float], k: Optional[int] = None, filter: Optional[Dict[str, str]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Any: """ Return documents most similar to the query vector. """ if k is None: k = self.limit res = self._query(embedding, k, filter=filter, name=name, **kwargs) return self.results_to_docs(res, score=kwargs.pop("score", False))
[docs] def similarity_search_by_vector_with_relevance_scores( self, embedding: List[float], k: Optional[int] = None, filter: Optional[Dict[str, str]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Any: """ Return documents most similar to the query vector with relevance scores. """ if k is None: k = self.limit relevance_score_fn = self._select_relevance_score_fn() docs_and_scores = self.similarity_search_by_vector( embedding, k, score=True, **kwargs ) return [ (doc, relevance_score_fn(float(score))) for doc, score in docs_and_scores ]
[docs] def similarity_search_with_score( self, query: str, k: Optional[int] = None, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> Any: """Return documents most similar to the query with relevance scores.""" if k is None: k = self.limit score = kwargs.get("score", True) name = kwargs.get("name", None) query_type = kwargs.get("query_type", "vector") if self._embedding is None: raise ValueError("search needs an emmbedding function to be specified.") if query_type == "fts" or query_type == "hybrid": if self.api_key is None and self._fts_index is None: tbl = self.get_table(name) self._fts_index = tbl.create_fts_index(self._text_key, replace=True) if query_type == "hybrid": embedding = self._embedding.embed_query(query) _query = (embedding, query) else: _query = query # type: ignore res = self._query(_query, k, filter=filter, name=name, **kwargs) return self.results_to_docs(res, score=score) else: raise NotImplementedError( "Full text/ Hybrid search is not supported in LanceDB Cloud yet." ) else: embedding = self._embedding.embed_query(query) res = self._query(embedding, k, filter=filter, **kwargs) return self.results_to_docs(res, score=score)
[docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: Optional[int] = None, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ results = self._query( query=embedding, k=fetch_k, filter=filter, **kwargs, ) mmr_selected = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), results["vector"].to_pylist(), k=k or self.limit, lambda_mult=lambda_mult, ) candidates = self.results_to_docs(results) selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected] return selected_results
[docs] @classmethod def from_texts( cls: Type[LanceDB], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, connection: Optional[Any] = None, vector_key: Optional[str] = "vector", id_key: Optional[str] = "id", text_key: Optional[str] = "text", table_name: Optional[str] = "vectorstore", api_key: Optional[str] = None, region: Optional[str] = None, mode: Optional[str] = "overwrite", distance: Optional[str] = "l2", reranker: Optional[Any] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, **kwargs: Any, ) -> LanceDB: instance = LanceDB( connection=connection, embedding=embedding, vector_key=vector_key, id_key=id_key, text_key=text_key, table_name=table_name, api_key=api_key, region=region, mode=mode, distance=distance, reranker=reranker, relevance_score_fn=relevance_score_fn, **kwargs, ) instance.add_texts(texts, metadatas=metadatas) return instance
[docs] def delete( self, ids: Optional[List[str]] = None, delete_all: Optional[bool] = None, filter: Optional[str] = None, drop_columns: Optional[List[str]] = None, name: Optional[str] = None, **kwargs: Any, ) -> None: """ Allows deleting rows by filtering, by ids or drop columns from the table. Args: filter: Provide a string SQL expression - "{col} {operation} {value}". ids: Provide list of ids to delete from the table. drop_columns: Provide list of columns to drop from the table. delete_all: If True, delete all rows from the table. """ tbl = self.get_table(name) if filter: tbl.delete(filter) elif ids: tbl.delete("id in ('{}')".format(",".join(ids))) elif drop_columns: if self.api_key is not None: raise NotImplementedError( "Column operations currently not supported in LanceDB Cloud." ) else: tbl.drop_columns(drop_columns) elif delete_all: tbl.delete("true") else: raise ValueError("Provide either filter, ids, drop_columns or delete_all")