import logging
from typing import (
TYPE_CHECKING,
Any,
Iterable,
List,
Optional,
Tuple,
Type,
TypeVar,
cast,
)
from uuid import uuid4
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.utils import get_from_env
from langchain_core.vectorstores import VectorStore
from langchain_community.vectorstores.utils import (
DistanceStrategy,
maximal_marginal_relevance,
)
VST = TypeVar("VST", bound="VectorStore")
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from momento import PreviewVectorIndexClient
[docs]class MomentoVectorIndex(VectorStore):
"""`Momento Vector Index` (MVI) vector store.
Momento Vector Index is a serverless vector index that can be used to store and
search vectors. To use you should have the ``momento`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import MomentoVectorIndex
from momento import (
CredentialProvider,
PreviewVectorIndexClient,
VectorIndexConfigurations,
)
vectorstore = MomentoVectorIndex(
embedding=OpenAIEmbeddings(),
client=PreviewVectorIndexClient(
VectorIndexConfigurations.Default.latest(),
credential_provider=CredentialProvider.from_environment_variable(
"MOMENTO_API_KEY"
),
),
index_name="my-index",
)
"""
[docs] def __init__(
self,
embedding: Embeddings,
client: "PreviewVectorIndexClient",
index_name: str = "default",
distance_strategy: DistanceStrategy = DistanceStrategy.COSINE,
text_field: str = "text",
ensure_index_exists: bool = True,
**kwargs: Any,
):
"""Initialize a Vector Store backed by Momento Vector Index.
Args:
embedding (Embeddings): The embedding function to use.
configuration (VectorIndexConfiguration): The configuration to initialize
the Vector Index with.
credential_provider (CredentialProvider): The credential provider to
authenticate the Vector Index with.
index_name (str, optional): The name of the index to store the documents in.
Defaults to "default".
distance_strategy (DistanceStrategy, optional): The distance strategy to
use. If you select DistanceStrategy.EUCLIDEAN_DISTANCE, Momento uses
the squared Euclidean distance. Defaults to DistanceStrategy.COSINE.
text_field (str, optional): The name of the metadata field to store the
original text in. Defaults to "text".
ensure_index_exists (bool, optional): Whether to ensure that the index
exists before adding documents to it. Defaults to True.
"""
try:
from momento import PreviewVectorIndexClient
except ImportError:
raise ImportError(
"Could not import momento python package. "
"Please install it with `pip install momento`."
)
self._client: PreviewVectorIndexClient = client
self._embedding = embedding
self.index_name = index_name
self.__validate_distance_strategy(distance_strategy)
self.distance_strategy = distance_strategy
self.text_field = text_field
self._ensure_index_exists = ensure_index_exists
@staticmethod
def __validate_distance_strategy(distance_strategy: DistanceStrategy) -> None:
if distance_strategy not in [
DistanceStrategy.COSINE,
DistanceStrategy.MAX_INNER_PRODUCT,
DistanceStrategy.MAX_INNER_PRODUCT,
]:
raise ValueError(f"Distance strategy {distance_strategy} not implemented.")
@property
def embeddings(self) -> Embeddings:
return self._embedding
def _create_index_if_not_exists(self, num_dimensions: int) -> bool:
"""Create index if it does not exist."""
from momento.requests.vector_index import SimilarityMetric
from momento.responses.vector_index import CreateIndex
similarity_metric = None
if self.distance_strategy == DistanceStrategy.COSINE:
similarity_metric = SimilarityMetric.COSINE_SIMILARITY
elif self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
similarity_metric = SimilarityMetric.INNER_PRODUCT
elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE:
similarity_metric = SimilarityMetric.EUCLIDEAN_SIMILARITY
else:
logger.error(f"Distance strategy {self.distance_strategy} not implemented.")
raise ValueError(
f"Distance strategy {self.distance_strategy} not implemented."
)
response = self._client.create_index(
self.index_name, num_dimensions, similarity_metric
)
if isinstance(response, CreateIndex.Success):
return True
elif isinstance(response, CreateIndex.IndexAlreadyExists):
return False
elif isinstance(response, CreateIndex.Error):
logger.error(f"Error creating index: {response.inner_exception}")
raise response.inner_exception
else:
logger.error(f"Unexpected response: {response}")
raise Exception(f"Unexpected response: {response}")
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts (Iterable[str]): Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]): Optional list of metadatas associated with
the texts.
kwargs (Any): Other optional parameters. Specifically:
- ids (List[str], optional): List of ids to use for the texts.
Defaults to None, in which case uuids are generated.
Returns:
List[str]: List of ids from adding the texts into the vectorstore.
"""
from momento.requests.vector_index import Item
from momento.responses.vector_index import UpsertItemBatch
texts = list(texts)
if len(texts) == 0:
return []
if metadatas is not None:
for metadata, text in zip(metadatas, texts):
metadata[self.text_field] = text
else:
metadatas = [{self.text_field: text} for text in texts]
try:
embeddings = self._embedding.embed_documents(texts)
except NotImplementedError:
embeddings = [self._embedding.embed_query(x) for x in texts]
# Create index if it does not exist.
# We assume that if it does exist, then it was created with the desired number
# of dimensions and similarity metric.
if self._ensure_index_exists:
self._create_index_if_not_exists(len(embeddings[0]))
if "ids" in kwargs:
ids = kwargs["ids"]
if len(ids) != len(embeddings):
raise ValueError("Number of ids must match number of texts")
else:
ids = [str(uuid4()) for _ in range(len(embeddings))]
batch_size = 128
for i in range(0, len(embeddings), batch_size):
start = i
end = min(i + batch_size, len(embeddings))
items = [
Item(id=id, vector=vector, metadata=metadata)
for id, vector, metadata in zip(
ids[start:end],
embeddings[start:end],
metadatas[start:end],
)
]
response = self._client.upsert_item_batch(self.index_name, items)
if isinstance(response, UpsertItemBatch.Success):
pass
elif isinstance(response, UpsertItemBatch.Error):
raise response.inner_exception
else:
raise Exception(f"Unexpected response: {response}")
return ids
[docs] def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
"""Delete by vector ID.
Args:
ids (List[str]): List of ids to delete.
kwargs (Any): Other optional parameters (unused)
Returns:
Optional[bool]: True if deletion is successful,
False otherwise, None if not implemented.
"""
from momento.responses.vector_index import DeleteItemBatch
if ids is None:
return True
response = self._client.delete_item_batch(self.index_name, ids)
return isinstance(response, DeleteItemBatch.Success)
[docs] def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Search for similar documents to the query string.
Args:
query (str): The query string to search for.
k (int, optional): The number of results to return. Defaults to 4.
Returns:
List[Document]: A list of documents that are similar to the query.
"""
res = self.similarity_search_with_score(query=query, k=k, **kwargs)
return [doc for doc, _ in res]
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Search for similar documents to the query string.
Args:
query (str): The query string to search for.
k (int, optional): The number of results to return. Defaults to 4.
kwargs (Any): Vector Store specific search parameters. The following are
forwarded to the Momento Vector Index:
- top_k (int, optional): The number of results to return.
Returns:
List[Tuple[Document, float]]: A list of tuples of the form
(Document, score).
"""
embedding = self._embedding.embed_query(query)
results = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, **kwargs
)
return results
[docs] def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Search for similar documents to the query vector.
Args:
embedding (List[float]): The query vector to search for.
k (int, optional): The number of results to return. Defaults to 4.
kwargs (Any): Vector Store specific search parameters. The following are
forwarded to the Momento Vector Index:
- top_k (int, optional): The number of results to return.
Returns:
List[Tuple[Document, float]]: A list of tuples of the form
(Document, score).
"""
from momento.requests.vector_index import ALL_METADATA
from momento.responses.vector_index import Search
if "top_k" in kwargs:
k = kwargs["k"]
filter_expression = kwargs.get("filter_expression", None)
response = self._client.search(
self.index_name,
embedding,
top_k=k,
metadata_fields=ALL_METADATA,
filter_expression=filter_expression,
)
if not isinstance(response, Search.Success):
return []
results = []
for hit in response.hits:
text = cast(str, hit.metadata.pop(self.text_field))
doc = Document(page_content=text, metadata=hit.metadata)
pair = (doc, hit.score)
results.append(pair)
return results
[docs] def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Search for similar documents to the query vector.
Args:
embedding (List[float]): The query vector to search for.
k (int, optional): The number of results to return. Defaults to 4.
Returns:
List[Document]: A list of documents that are similar to the query.
"""
results = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, **kwargs
)
return [doc for doc, _ in results]
[docs] def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
from momento.requests.vector_index import ALL_METADATA
from momento.responses.vector_index import SearchAndFetchVectors
filter_expression = kwargs.get("filter_expression", None)
response = self._client.search_and_fetch_vectors(
self.index_name,
embedding,
top_k=fetch_k,
metadata_fields=ALL_METADATA,
filter_expression=filter_expression,
)
if isinstance(response, SearchAndFetchVectors.Success):
pass
elif isinstance(response, SearchAndFetchVectors.Error):
logger.error(f"Error searching and fetching vectors: {response}")
return []
else:
logger.error(f"Unexpected response: {response}")
raise Exception(f"Unexpected response: {response}")
mmr_selected = maximal_marginal_relevance(
query_embedding=np.array([embedding], dtype=np.float32),
embedding_list=[hit.vector for hit in response.hits],
lambda_mult=lambda_mult,
k=k,
)
selected = [response.hits[i].metadata for i in mmr_selected]
return [
Document(page_content=metadata.pop(self.text_field, ""), metadata=metadata) # type: ignore
for metadata in selected
]
[docs] def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self._embedding.embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding, k, fetch_k, lambda_mult, **kwargs
)
[docs] @classmethod
def from_texts(
cls: Type[VST],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> VST:
"""Return the Vector Store initialized from texts and embeddings.
Args:
cls (Type[VST]): The Vector Store class to use to initialize
the Vector Store.
texts (List[str]): The texts to initialize the Vector Store with.
embedding (Embeddings): The embedding function to use.
metadatas (Optional[List[dict]], optional): The metadata associated with
the texts. Defaults to None.
kwargs (Any): Vector Store specific parameters. The following are forwarded
to the Vector Store constructor and required:
- index_name (str, optional): The name of the index to store the documents
in. Defaults to "default".
- text_field (str, optional): The name of the metadata field to store the
original text in. Defaults to "text".
- distance_strategy (DistanceStrategy, optional): The distance strategy to
use. Defaults to DistanceStrategy.COSINE. If you select
DistanceStrategy.EUCLIDEAN_DISTANCE, Momento uses the squared
Euclidean distance.
- ensure_index_exists (bool, optional): Whether to ensure that the index
exists before adding documents to it. Defaults to True.
Additionally you can either pass in a client or an API key
- client (PreviewVectorIndexClient): The Momento Vector Index client to use.
- api_key (Optional[str]): The configuration to use to initialize
the Vector Index with. Defaults to None. If None, the configuration
is initialized from the environment variable `MOMENTO_API_KEY`.
Returns:
VST: Momento Vector Index vector store initialized from texts and
embeddings.
"""
from momento import (
CredentialProvider,
PreviewVectorIndexClient,
VectorIndexConfigurations,
)
if "client" in kwargs:
client = kwargs.pop("client")
else:
supplied_api_key = kwargs.pop("api_key", None)
api_key = supplied_api_key or get_from_env("api_key", "MOMENTO_API_KEY")
client = PreviewVectorIndexClient(
configuration=VectorIndexConfigurations.Default.latest(),
credential_provider=CredentialProvider.from_string(api_key),
)
vector_db = cls(embedding=embedding, client=client, **kwargs) # type: ignore
vector_db.add_texts(texts=texts, metadatas=metadatas, **kwargs)
return vector_db