from __future__ import annotations
from typing import Any, Dict, Iterable, List, Optional, Tuple
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.utils import guard_import
from langchain_core.vectorstores import VectorStore
from langchain_community.docstore.base import AddableMixin, Docstore
from langchain_community.docstore.in_memory import InMemoryDocstore
[docs]def dependable_usearch_import() -> Any:
"""
Import usearch if available, otherwise raise error.
"""
return guard_import("usearch.index")
[docs]class USearch(VectorStore):
"""`USearch` vector store.
To use, you should have the ``usearch`` python package installed.
"""
[docs] def __init__(
self,
embedding: Embeddings,
index: Any,
docstore: Docstore,
ids: List[str],
):
"""Initialize with necessary components."""
self.embedding = embedding
self.index = index
self.docstore = docstore
self.ids = ids
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[Dict]] = None,
ids: Optional[np.ndarray] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of unique IDs.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
"If trying to add texts, the underlying docstore should support "
f"adding items, which {self.docstore} does not"
)
embeddings = self.embedding.embed_documents(list(texts))
documents = []
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
documents.append(Document(page_content=text, metadata=metadata))
last_id = int(self.ids[-1]) + 1
if ids is None:
ids = np.array([str(last_id + id) for id, _ in enumerate(texts)])
self.index.add(np.array(ids), np.array(embeddings))
self.docstore.add(dict(zip(ids, documents)))
self.ids.extend(ids)
return ids.tolist()
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 4,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of documents most similar to the query with distance.
"""
query_embedding = self.embedding.embed_query(query)
matches = self.index.search(np.array(query_embedding), k)
docs_with_scores: List[Tuple[Document, float]] = []
for id, score in zip(matches.keys, matches.distances):
doc = self.docstore.search(str(id))
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {id}, got {doc}")
docs_with_scores.append((doc, score))
return docs_with_scores
[docs] def similarity_search(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
query_embedding = self.embedding.embed_query(query)
matches = self.index.search(np.array(query_embedding), k)
docs: List[Document] = []
for id in matches.keys:
doc = self.docstore.search(str(id))
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {id}, got {doc}")
docs.append(doc)
return docs
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[Dict]] = None,
ids: Optional[np.ndarray] = None,
metric: str = "cos",
**kwargs: Any,
) -> USearch:
"""Construct USearch wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Creates an in memory docstore
3. Initializes the USearch database
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain_community.vectorstores import USearch
from langchain_community.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
usearch = USearch.from_texts(texts, embeddings)
"""
embeddings = embedding.embed_documents(texts)
documents: List[Document] = []
if ids is None:
ids = np.array([str(id) for id, _ in enumerate(texts)])
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
documents.append(Document(page_content=text, metadata=metadata))
docstore = InMemoryDocstore(dict(zip(ids, documents)))
usearch = guard_import("usearch.index")
index = usearch.Index(ndim=len(embeddings[0]), metric=metric)
index.add(np.array(ids), np.array(embeddings))
return cls(embedding, index, docstore, ids.tolist())