Source code for langchain_community.vectorstores.vespa

from __future__ import annotations

from typing import Any, Dict, Iterable, List, Optional, Tuple, Type, Union

from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore, VectorStoreRetriever


[docs]class VespaStore(VectorStore): """ `Vespa` vector store. To use, you should have the python client library ``pyvespa`` installed. Example: .. code-block:: python from langchain_community.vectorstores import VespaStore from langchain_community.embeddings.openai import OpenAIEmbeddings from vespa.application import Vespa # Create a vespa client dependent upon your application, # e.g. either connecting to Vespa Cloud or a local deployment # such as Docker. Please refer to the PyVespa documentation on # how to initialize the client. vespa_app = Vespa(url="...", port=..., application_package=...) # You need to instruct LangChain on which fields to use for embeddings vespa_config = dict( page_content_field="text", embedding_field="embedding", input_field="query_embedding", metadata_fields=["date", "rating", "author"] ) embedding_function = OpenAIEmbeddings() vectorstore = VespaStore(vespa_app, embedding_function, **vespa_config) """
[docs] def __init__( self, app: Any, embedding_function: Optional[Embeddings] = None, page_content_field: Optional[str] = None, embedding_field: Optional[str] = None, input_field: Optional[str] = None, metadata_fields: Optional[List[str]] = None, ) -> None: """ Initialize with a PyVespa client. """ try: from vespa.application import Vespa except ImportError: raise ImportError( "Could not import Vespa python package. " "Please install it with `pip install pyvespa`." ) if not isinstance(app, Vespa): raise ValueError( f"app should be an instance of vespa.application.Vespa, got {type(app)}" ) self._vespa_app = app self._embedding_function = embedding_function self._page_content_field = page_content_field self._embedding_field = embedding_field self._input_field = input_field self._metadata_fields = metadata_fields
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """ Add texts to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ embeddings = None if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(texts)) if ids is None: ids = [str(f"{i+1}") for i, _ in enumerate(texts)] batch = [] for i, text in enumerate(texts): fields: Dict[str, Union[str, List[float]]] = {} if self._page_content_field is not None: fields[self._page_content_field] = text if self._embedding_field is not None and embeddings is not None: fields[self._embedding_field] = embeddings[i] if metadatas is not None and self._metadata_fields is not None: for metadata_field in self._metadata_fields: if metadata_field in metadatas[i]: fields[metadata_field] = metadatas[i][metadata_field] batch.append({"id": ids[i], "fields": fields}) results = self._vespa_app.feed_batch(batch) for result in results: if not (str(result.status_code).startswith("2")): raise RuntimeError( f"Could not add document to Vespa. " f"Error code: {result.status_code}. " f"Message: {result.json['message']}" ) return ids
[docs] def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: if ids is None: return False batch = [{"id": id} for id in ids] result = self._vespa_app.delete_batch(batch) return sum([0 if r.status_code == 200 else 1 for r in result]) == 0
def _create_query( self, query_embedding: List[float], k: int = 4, **kwargs: Any ) -> Dict: hits = k doc_embedding_field = self._embedding_field input_embedding_field = self._input_field ranking_function = kwargs["ranking"] if "ranking" in kwargs else "default" filter = kwargs["filter"] if "filter" in kwargs else None approximate = kwargs["approximate"] if "approximate" in kwargs else False approximate = "true" if approximate else "false" yql = "select * from sources * where " yql += f"{{targetHits: {hits}, approximate: {approximate}}}" yql += f"nearestNeighbor({doc_embedding_field}, {input_embedding_field})" if filter is not None: yql += f" and {filter}" query = { "yql": yql, f"input.query({input_embedding_field})": query_embedding, "ranking": ranking_function, "hits": hits, } return query
[docs] def similarity_search_by_vector_with_score( self, query_embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """ Performs similarity search from a embeddings vector. Args: query_embedding: Embeddings vector to search for. k: Number of results to return. custom_query: Use this custom query instead default query (kwargs) kwargs: other vector store specific parameters Returns: List of ids from adding the texts into the vectorstore. """ if "custom_query" in kwargs: query = kwargs["custom_query"] else: query = self._create_query(query_embedding, k, **kwargs) try: response = self._vespa_app.query(body=query) except Exception as e: raise RuntimeError( f"Could not retrieve data from Vespa: " f"{e.args[0][0]['summary']}. " f"Error: {e.args[0][0]['message']}" ) if not str(response.status_code).startswith("2"): raise RuntimeError( f"Could not retrieve data from Vespa. " f"Error code: {response.status_code}. " f"Message: {response.json['message']}" ) root = response.json["root"] if "errors" in root: import json raise RuntimeError(json.dumps(root["errors"])) if response is None or response.hits is None: return [] docs = [] for child in response.hits: page_content = child["fields"][self._page_content_field] score = child["relevance"] metadata = {"id": child["id"]} if self._metadata_fields is not None: for field in self._metadata_fields: metadata[field] = child["fields"].get(field) doc = Document(page_content=page_content, metadata=metadata) docs.append((doc, score)) return docs
[docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: results = self.similarity_search_by_vector_with_score(embedding, k, **kwargs) return [r[0] for r in results]
[docs] def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: query_emb = [] if self._embedding_function is not None: query_emb = self._embedding_function.embed_query(query) return self.similarity_search_by_vector_with_score(query_emb, k, **kwargs)
[docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: raise NotImplementedError("MMR search by vector not implemented")
[docs] @classmethod def from_texts( cls: Type[VespaStore], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> VespaStore: vespa = cls(embedding_function=embedding, **kwargs) vespa.add_texts(texts=texts, metadatas=metadatas, ids=ids) return vespa
[docs] def as_retriever(self, **kwargs: Any) -> VectorStoreRetriever: return super().as_retriever(**kwargs)