Source code for langchain_community.vectorstores.weaviate

from __future__ import annotations

import datetime
import os
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    Optional,
    Tuple,
)
from uuid import uuid4

import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore

from langchain_community.vectorstores.utils import maximal_marginal_relevance

if TYPE_CHECKING:
    import weaviate


def _default_schema(index_name: str, text_key: str) -> Dict:
    return {
        "class": index_name,
        "properties": [
            {
                "name": text_key,
                "dataType": ["text"],
            }
        ],
    }


def _create_weaviate_client(
    url: Optional[str] = None,
    api_key: Optional[str] = None,
    **kwargs: Any,
) -> weaviate.Client:
    try:
        import weaviate
    except ImportError:
        raise ImportError(
            "Could not import weaviate python  package. "
            "Please install it with `pip install weaviate-client`"
        )
    url = url or os.environ.get("WEAVIATE_URL")
    api_key = api_key or os.environ.get("WEAVIATE_API_KEY")
    auth = weaviate.auth.AuthApiKey(api_key=api_key) if api_key else None
    return weaviate.Client(url=url, auth_client_secret=auth, **kwargs)


def _default_score_normalizer(val: float) -> float:
    return 1 - 1 / (1 + np.exp(val))


def _json_serializable(value: Any) -> Any:
    if isinstance(value, datetime.datetime):
        return value.isoformat()
    return value


[docs]class Weaviate(VectorStore): """`Weaviate` vector store. To use, you should have the ``weaviate-client`` python package installed. Example: .. code-block:: python import weaviate from langchain_community.vectorstores import Weaviate client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...) weaviate = Weaviate(client, index_name, text_key) """
[docs] def __init__( self, client: Any, index_name: str, text_key: str, embedding: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, relevance_score_fn: Optional[ Callable[[float], float] ] = _default_score_normalizer, by_text: bool = True, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ImportError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._embedding = embedding self._text_key = text_key self._query_attrs = [self._text_key] self.relevance_score_fn = relevance_score_fn self._by_text = by_text if attributes is not None: self._query_attrs.extend(attributes)
@property def embeddings(self) -> Optional[Embeddings]: return self._embedding def _select_relevance_score_fn(self) -> Callable[[float], float]: return ( self.relevance_score_fn if self.relevance_score_fn else _default_score_normalizer )
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid ids = [] embeddings: Optional[List[List[float]]] = None if self._embedding: if not isinstance(texts, list): texts = list(texts) embeddings = self._embedding.embed_documents(texts) with self._client.batch as batch: for i, text in enumerate(texts): data_properties = {self._text_key: text} if metadatas is not None: for key, val in metadatas[i].items(): data_properties[key] = _json_serializable(val) # Allow for ids (consistent w/ other methods) # # Or uuids (backwards compatible w/ existing arg) # If the UUID of one of the objects already exists # then the existing object will be replaced by the new object. _id = get_valid_uuid(uuid4()) if "uuids" in kwargs: _id = kwargs["uuids"][i] elif "ids" in kwargs: _id = kwargs["ids"][i] batch.add_data_object( data_object=data_properties, class_name=self._index_name, uuid=_id, vector=embeddings[i] if embeddings else None, tenant=kwargs.get("tenant"), ) ids.append(_id) return ids
[docs] def similarity_search_by_text( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ content: Dict[str, Any] = {"concepts": [query]} if kwargs.get("search_distance"): content["certainty"] = kwargs.get("search_distance") query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("tenant"): query_obj = query_obj.with_tenant(kwargs.get("tenant")) if kwargs.get("additional"): query_obj = query_obj.with_additional(kwargs.get("additional")) result = query_obj.with_near_text(content).with_limit(k).do() if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs
[docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Look up similar documents by embedding vector in Weaviate.""" vector = {"vector": embedding} query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("tenant"): query_obj = query_obj.with_tenant(kwargs.get("tenant")) if kwargs.get("additional"): query_obj = query_obj.with_additional(kwargs.get("additional")) result = query_obj.with_near_vector(vector).with_limit(k).do() if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs
[docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ vector = {"vector": embedding} query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("tenant"): query_obj = query_obj.with_tenant(kwargs.get("tenant")) results = ( query_obj.with_additional("vector") .with_near_vector(vector) .with_limit(fetch_k) .do() ) payload = results["data"]["Get"][self._index_name] embeddings = [result["_additional"]["vector"] for result in payload] mmr_selected = maximal_marginal_relevance( np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult ) docs = [] for idx in mmr_selected: text = payload[idx].pop(self._text_key) payload[idx].pop("_additional") meta = payload[idx] docs.append(Document(page_content=text, metadata=meta)) return docs
[docs] def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """ Return list of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ if self._embedding is None: raise ValueError( "_embedding cannot be None for similarity_search_with_score" ) content: Dict[str, Any] = {"concepts": [query]} if kwargs.get("search_distance"): content["certainty"] = kwargs.get("search_distance") query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) if kwargs.get("tenant"): query_obj = query_obj.with_tenant(kwargs.get("tenant")) embedded_query = self._embedding.embed_query(query) if not self._by_text: vector = {"vector": embedded_query} result = ( query_obj.with_near_vector(vector) .with_limit(k) .with_additional("vector") .do() ) else: result = ( query_obj.with_near_text(content) .with_limit(k) .with_additional("vector") .do() ) if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs_and_scores = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) score = np.dot(res["_additional"]["vector"], embedded_query) docs_and_scores.append((Document(page_content=text, metadata=res), score)) return docs_and_scores
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, *, client: Optional[weaviate.Client] = None, weaviate_url: Optional[str] = None, weaviate_api_key: Optional[str] = None, batch_size: Optional[int] = None, index_name: Optional[str] = None, text_key: str = "text", by_text: bool = False, relevance_score_fn: Optional[ Callable[[float], float] ] = _default_score_normalizer, **kwargs: Any, ) -> Weaviate: """Construct Weaviate wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the Weaviate instance. 3. Adds the documents to the newly created Weaviate index. This is intended to be a quick way to get started. Args: texts: Texts to add to vector store. embedding: Text embedding model to use. metadatas: Metadata associated with each text. client: weaviate.Client to use. weaviate_url: The Weaviate URL. If using Weaviate Cloud Services get it from the ``Details`` tab. Can be passed in as a named param or by setting the environment variable ``WEAVIATE_URL``. Should not be specified if client is provided. weaviate_api_key: The Weaviate API key. If enabled and using Weaviate Cloud Services, get it from ``Details`` tab. Can be passed in as a named param or by setting the environment variable ``WEAVIATE_API_KEY``. Should not be specified if client is provided. batch_size: Size of batch operations. index_name: Index name. text_key: Key to use for uploading/retrieving text to/from vectorstore. by_text: Whether to search by text or by embedding. relevance_score_fn: Function for converting whatever distance function the vector store uses to a relevance score, which is a normalized similarity score (0 means dissimilar, 1 means similar). kwargs: Additional named parameters to pass to ``Weaviate.__init__()``. Example: .. code-block:: python from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import Weaviate embeddings = OpenAIEmbeddings() weaviate = Weaviate.from_texts( texts, embeddings, weaviate_url="http://localhost:8080" ) """ try: from weaviate.util import get_valid_uuid except ImportError as e: raise ImportError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`" ) from e client = client or _create_weaviate_client( url=weaviate_url, api_key=weaviate_api_key, ) if batch_size: client.batch.configure(batch_size=batch_size) index_name = index_name or f"LangChain_{uuid4().hex}" schema = _default_schema(index_name, text_key) # check whether the index already exists if not client.schema.exists(index_name): client.schema.create_class(schema) embeddings = embedding.embed_documents(texts) if embedding else None attributes = list(metadatas[0].keys()) if metadatas else None # If the UUID of one of the objects already exists # then the existing object will be replaced by the new object. if "uuids" in kwargs: uuids = kwargs.pop("uuids") else: uuids = [get_valid_uuid(uuid4()) for _ in range(len(texts))] with client.batch as batch: for i, text in enumerate(texts): data_properties = { text_key: text, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = uuids[i] # if an embedding strategy is not provided, we let # weaviate create the embedding. Note that this will only # work if weaviate has been installed with a vectorizer module # like text2vec-contextionary for example params = { "uuid": _id, "data_object": data_properties, "class_name": index_name, } if embeddings is not None: params["vector"] = embeddings[i] batch.add_data_object(**params) batch.flush() return cls( client, index_name, text_key, embedding=embedding, attributes=attributes, relevance_score_fn=relevance_score_fn, by_text=by_text, **kwargs, )
[docs] def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None: """Delete by vector IDs. Args: ids: List of ids to delete. """ if ids is None: raise ValueError("No ids provided to delete.") # TODO: Check if this can be done in bulk for id in ids: self._client.data_object.delete(uuid=id)