from __future__ import annotations
import atexit
import csv
import enum
import json
import logging
import uuid
from contextlib import contextmanager
from io import StringIO
from typing import (
TYPE_CHECKING,
Any,
Dict,
Generator,
Iterable,
List,
Optional,
Tuple,
Type,
)
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
from langchain_community.docstore.document import Document
if TYPE_CHECKING:
from psycopg2.extensions import connection as PgConnection
from psycopg2.extensions import cursor as PgCursor
[docs]class Yellowbrick(VectorStore):
"""Yellowbrick as a vector database.
Example:
.. code-block:: python
from langchain_community.vectorstores import Yellowbrick
from langchain_community.embeddings.openai import OpenAIEmbeddings
...
"""
class IndexType(str, enum.Enum):
"""Enumerator for the supported Index types within Yellowbrick."""
NONE = "none"
LSH = "lsh"
class IndexParams:
"""Parameters for configuring a Yellowbrick index."""
def __init__(
self,
index_type: Optional["Yellowbrick.IndexType"] = None,
params: Optional[Dict[str, Any]] = None,
):
if index_type is None:
index_type = Yellowbrick.IndexType.NONE
self.index_type = index_type
self.params = params or {}
def get_param(self, key: str, default: Any = None) -> Any:
return self.params.get(key, default)
[docs] def __init__(
self,
embedding: Embeddings,
connection_string: str,
table: str,
*,
schema: Optional[str] = None,
logger: Optional[logging.Logger] = None,
drop: bool = False,
) -> None:
"""Initialize with yellowbrick client.
Args:
embedding: Embedding operator
connection_string: Format 'postgres://username:password@host:port/database'
table: Table used to store / retrieve embeddings from
"""
from psycopg2 import extras
extras.register_uuid()
if logger:
self.logger = logger
else:
self.logger = logging.getLogger(__name__)
self.logger.setLevel(logging.ERROR)
handler = logging.StreamHandler()
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
self.logger.addHandler(handler)
if not isinstance(embedding, Embeddings):
self.logger.error("embeddings input must be Embeddings object.")
return
self.LSH_INDEX_TABLE: str = "_lsh_index"
self.LSH_HYPERPLANE_TABLE: str = "_lsh_hyperplane"
self.CONTENT_TABLE: str = "_content"
self.connection_string = connection_string
self.connection = Yellowbrick.DatabaseConnection(connection_string, self.logger)
atexit.register(self.connection.close_connection)
self._schema = schema
self._table = table
self._embedding = embedding
self._max_embedding_len = None
self._check_database_utf8()
with self.connection.get_cursor() as cursor:
if drop:
self.drop(table=self._table, schema=self._schema, cursor=cursor)
self.drop(
table=self._table + self.CONTENT_TABLE,
schema=self._schema,
cursor=cursor,
)
self._drop_lsh_index_tables(cursor)
self._create_schema(cursor)
self._create_table(cursor)
class DatabaseConnection:
_instance = None
_connection_string: str
_connection: Optional["PgConnection"] = None
_logger: logging.Logger
def __new__(
cls, connection_string: str, logger: logging.Logger
) -> "Yellowbrick.DatabaseConnection":
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._connection_string = connection_string
cls._instance._logger = logger
return cls._instance
def close_connection(self) -> None:
if self._connection and not self._connection.closed:
self._connection.close()
self._connection = None
def get_connection(self) -> "PgConnection":
import psycopg2
if not self._connection or self._connection.closed:
self._connection = psycopg2.connect(self._connection_string)
self._connection.autocommit = False
return self._connection
@contextmanager
def get_managed_connection(self) -> Generator["PgConnection", None, None]:
from psycopg2 import DatabaseError
conn = self.get_connection()
try:
yield conn
except DatabaseError as e:
conn.rollback()
self._logger.error(
"Database error occurred, rolling back transaction.", exc_info=True
)
raise RuntimeError("Database transaction failed.") from e
else:
conn.commit()
@contextmanager
def get_cursor(self) -> Generator["PgCursor", None, None]:
with self.get_managed_connection() as conn:
cursor = conn.cursor()
try:
yield cursor
finally:
cursor.close()
def _create_schema(self, cursor: "PgCursor") -> None:
"""
Helper function: create schema if not exists
"""
from psycopg2 import sql
if self._schema:
cursor.execute(
sql.SQL(
"""
CREATE SCHEMA IF NOT EXISTS {s}
"""
).format(
s=sql.Identifier(self._schema),
)
)
def _create_table(self, cursor: "PgCursor") -> None:
"""
Helper function: create table if not exists
"""
from psycopg2 import sql
schema_prefix = (self._schema,) if self._schema else ()
t = sql.Identifier(*schema_prefix, self._table + self.CONTENT_TABLE)
c = sql.Identifier(self._table + self.CONTENT_TABLE + "_pk_doc_id")
cursor.execute(
sql.SQL(
"""
CREATE TABLE IF NOT EXISTS {t} (
doc_id UUID NOT NULL,
text VARCHAR(60000) NOT NULL,
metadata VARCHAR(1024) NOT NULL,
CONSTRAINT {c} PRIMARY KEY (doc_id))
DISTRIBUTE ON (doc_id) SORT ON (doc_id)
"""
).format(
t=t,
c=c,
)
)
schema_prefix = (self._schema,) if self._schema else ()
t1 = sql.Identifier(*schema_prefix, self._table)
t2 = sql.Identifier(*schema_prefix, self._table + self.CONTENT_TABLE)
c1 = sql.Identifier(
self._table + self.CONTENT_TABLE + "_pk_doc_id_embedding_id"
)
c2 = sql.Identifier(self._table + self.CONTENT_TABLE + "_fk_doc_id")
cursor.execute(
sql.SQL(
"""
CREATE TABLE IF NOT EXISTS {t1} (
doc_id UUID NOT NULL,
embedding_id SMALLINT NOT NULL,
embedding FLOAT NOT NULL,
CONSTRAINT {c1} PRIMARY KEY (doc_id, embedding_id),
CONSTRAINT {c2} FOREIGN KEY (doc_id) REFERENCES {t2}(doc_id))
DISTRIBUTE ON (doc_id) SORT ON (doc_id)
"""
).format(
t1=t1,
t2=t2,
c1=c1,
c2=c2,
)
)
[docs] def drop(
self,
table: str,
schema: Optional[str] = None,
cursor: Optional["PgCursor"] = None,
) -> None:
"""
Helper function: Drop data. If a cursor is provided, use it;
otherwise, obtain a new cursor for the operation.
"""
if cursor is None:
with self.connection.get_cursor() as cursor:
self._drop_table(cursor, table, schema=schema)
else:
self._drop_table(cursor, table, schema=schema)
def _drop_table(
self,
cursor: "PgCursor",
table: str,
schema: Optional[str] = None,
) -> None:
"""
Executes the drop table command using the given cursor.
"""
from psycopg2 import sql
if schema:
table_name = sql.Identifier(schema, table)
else:
table_name = sql.Identifier(table)
drop_table_query = sql.SQL(
"""
DROP TABLE IF EXISTS {} CASCADE
"""
).format(table_name)
cursor.execute(drop_table_query)
def _check_database_utf8(self) -> bool:
"""
Helper function: Test the database is UTF-8 encoded
"""
with self.connection.get_cursor() as cursor:
query = """
SELECT pg_encoding_to_char(encoding)
FROM pg_database
WHERE datname = current_database();
"""
cursor.execute(query)
encoding = cursor.fetchone()[0]
if encoding.lower() == "utf8" or encoding.lower() == "utf-8":
return True
else:
raise Exception("Database encoding is not UTF-8")
return False
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
batch_size = 10000
texts = list(texts)
embeddings = self._embedding.embed_documents(list(texts))
results = []
if not metadatas:
metadatas = [{} for _ in texts]
index_params = kwargs.get("index_params") or Yellowbrick.IndexParams()
with self.connection.get_cursor() as cursor:
content_io = StringIO()
embeddings_io = StringIO()
content_writer = csv.writer(
content_io, delimiter="\t", quotechar='"', quoting=csv.QUOTE_MINIMAL
)
embeddings_writer = csv.writer(
embeddings_io, delimiter="\t", quotechar='"', quoting=csv.QUOTE_MINIMAL
)
current_batch_size = 0
for i, text in enumerate(texts):
doc_uuid = str(uuid.uuid4())
results.append(doc_uuid)
content_writer.writerow([doc_uuid, text, json.dumps(metadatas[i])])
for embedding_id, embedding in enumerate(embeddings[i]):
embeddings_writer.writerow([doc_uuid, embedding_id, embedding])
current_batch_size += 1
if current_batch_size >= batch_size:
self._copy_to_db(cursor, content_io, embeddings_io)
content_io.seek(0)
content_io.truncate(0)
embeddings_io.seek(0)
embeddings_io.truncate(0)
current_batch_size = 0
if current_batch_size > 0:
self._copy_to_db(cursor, content_io, embeddings_io)
if index_params.index_type == Yellowbrick.IndexType.LSH:
self._update_index(index_params, uuid.UUID(doc_uuid))
return results
def _copy_to_db(
self, cursor: "PgCursor", content_io: StringIO, embeddings_io: StringIO
) -> None:
content_io.seek(0)
embeddings_io.seek(0)
from psycopg2 import sql
schema_prefix = (self._schema,) if self._schema else ()
table = sql.Identifier(*schema_prefix, self._table + self.CONTENT_TABLE)
content_copy_query = sql.SQL(
"""
COPY {table} (doc_id, text, metadata) FROM
STDIN WITH (FORMAT CSV, DELIMITER E'\\t', QUOTE '\"')
"""
).format(table=table)
cursor.copy_expert(content_copy_query, content_io)
schema_prefix = (self._schema,) if self._schema else ()
table = sql.Identifier(*schema_prefix, self._table)
embeddings_copy_query = sql.SQL(
"""
COPY {table} (doc_id, embedding_id, embedding) FROM
STDIN WITH (FORMAT CSV, DELIMITER E'\\t', QUOTE '\"')
"""
).format(table=table)
cursor.copy_expert(embeddings_copy_query, embeddings_io)
[docs] @classmethod
def from_texts(
cls: Type[Yellowbrick],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
connection_string: str = "",
table: str = "langchain",
schema: str = "public",
drop: bool = False,
**kwargs: Any,
) -> Yellowbrick:
"""Add texts to the vectorstore index.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
connection_string: URI to Yellowbrick instance
embedding: Embedding function
table: table to store embeddings
kwargs: vectorstore specific parameters
"""
vss = cls(
embedding=embedding,
connection_string=connection_string,
table=table,
schema=schema,
drop=drop,
)
vss.add_texts(texts=texts, metadatas=metadatas, **kwargs)
return vss
[docs] def delete(
self,
ids: Optional[List[str]] = None,
delete_all: Optional[bool] = None,
**kwargs: Any,
) -> None:
"""Delete vectors by uuids.
Args:
ids: List of ids to delete, where each id is a uuid string.
"""
from psycopg2 import sql
if delete_all:
where_sql = sql.SQL(
"""
WHERE 1=1
"""
)
elif ids is not None:
uuids = tuple(sql.Literal(id) for id in ids)
ids_formatted = sql.SQL(", ").join(uuids)
where_sql = sql.SQL(
"""
WHERE doc_id IN ({ids})
"""
).format(
ids=ids_formatted,
)
else:
raise ValueError("Either ids or delete_all must be provided.")
schema_prefix = (self._schema,) if self._schema else ()
with self.connection.get_cursor() as cursor:
table_identifier = sql.Identifier(
*schema_prefix, self._table + self.CONTENT_TABLE
)
query = sql.SQL("DELETE FROM {table} {where_sql}").format(
table=table_identifier, where_sql=where_sql
)
cursor.execute(query)
table_identifier = sql.Identifier(*schema_prefix, self._table)
query = sql.SQL("DELETE FROM {table} {where_sql}").format(
table=table_identifier, where_sql=where_sql
)
cursor.execute(query)
if self._table_exists(
cursor, self._table + self.LSH_INDEX_TABLE, *schema_prefix
):
table_identifier = sql.Identifier(
*schema_prefix, self._table + self.LSH_INDEX_TABLE
)
query = sql.SQL("DELETE FROM {table} {where_sql}").format(
table=table_identifier, where_sql=where_sql
)
cursor.execute(query)
return None
def _table_exists(
self, cursor: "PgCursor", table_name: str, schema: str = "public"
) -> bool:
"""
Checks if a table exists in the given schema
"""
from psycopg2 import sql
schema = sql.Literal(schema)
table_name = sql.Literal(table_name)
cursor.execute(
sql.SQL(
"""
SELECT COUNT(*)
FROM sys.table t INNER JOIN sys.schema s ON t.schema_id = s.schema_id
WHERE s.name = {schema} AND t.name = {table_name}
"""
).format(
schema=schema,
table_name=table_name,
)
)
return cursor.fetchone()[0] > 0
def _generate_vector_uuid(self, vector: List[float]) -> uuid.UUID:
import hashlib
vector_str = ",".join(map(str, vector))
hash_object = hashlib.sha1(vector_str.encode())
hash_digest = hash_object.digest()
vector_uuid = uuid.UUID(bytes=hash_digest[:16])
return vector_uuid
[docs] def similarity_search_with_score_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Perform a similarity search with Yellowbrick with vector
Args:
embedding (List[float]): query embedding
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
NOTE: Please do not let end-user fill this and always be aware
of SQL injection.
Returns:
List[Document, float]: List of Documents and scores
"""
from psycopg2 import sql
from psycopg2.extras import execute_values
index_params = kwargs.get("index_params") or Yellowbrick.IndexParams()
with self.connection.get_cursor() as cursor:
tmp_embeddings_table = "tmp_" + self._table
tmp_doc_id = self._generate_vector_uuid(embedding)
create_table_query = sql.SQL(
"""
CREATE TEMPORARY TABLE {} (
doc_id UUID,
embedding_id SMALLINT,
embedding FLOAT)
ON COMMIT DROP
DISTRIBUTE REPLICATE
"""
).format(sql.Identifier(tmp_embeddings_table))
cursor.execute(create_table_query)
data_input = [
(str(tmp_doc_id), embedding_id, embedding_value)
for embedding_id, embedding_value in enumerate(embedding)
]
insert_query = sql.SQL(
"INSERT INTO {} (doc_id, embedding_id, embedding) VALUES %s"
).format(sql.Identifier(tmp_embeddings_table))
execute_values(cursor, insert_query, data_input)
v1 = sql.Identifier(tmp_embeddings_table)
schema_prefix = (self._schema,) if self._schema else ()
v2 = sql.Identifier(*schema_prefix, self._table)
v3 = sql.Identifier(*schema_prefix, self._table + self.CONTENT_TABLE)
if index_params.index_type == Yellowbrick.IndexType.LSH:
tmp_hash_table = self._table + "_tmp_hash"
self._generate_tmp_lsh_hashes(
cursor,
tmp_embeddings_table,
tmp_hash_table,
)
schema_prefix = (self._schema,) if self._schema else ()
lsh_index = sql.Identifier(
*schema_prefix, self._table + self.LSH_INDEX_TABLE
)
input_hash_table = sql.Identifier(tmp_hash_table)
sql_query = sql.SQL(
"""
WITH index_docs AS (
SELECT
t1.doc_id,
SUM(ABS(t1.hash-t2.hash)) as hamming_distance
FROM
{lsh_index} t1
INNER JOIN
{input_hash_table} t2
ON t1.hash_index = t2.hash_index
GROUP BY t1.doc_id
HAVING hamming_distance <= {hamming_distance}
)
SELECT
text,
metadata,
SUM(v1.embedding * v2.embedding) /
(SQRT(SUM(v1.embedding * v1.embedding)) *
SQRT(SUM(v2.embedding * v2.embedding))) AS score
FROM
{v1} v1
INNER JOIN
{v2} v2
ON v1.embedding_id = v2.embedding_id
INNER JOIN
{v3} v3
ON v2.doc_id = v3.doc_id
INNER JOIN
index_docs v4
ON v2.doc_id = v4.doc_id
GROUP BY v3.doc_id, v3.text, v3.metadata
ORDER BY score DESC
LIMIT %s
"""
).format(
v1=v1,
v2=v2,
v3=v3,
lsh_index=lsh_index,
input_hash_table=input_hash_table,
hamming_distance=sql.Literal(
index_params.get_param("hamming_distance", 0)
),
)
cursor.execute(
sql_query,
(k,),
)
results = cursor.fetchall()
else:
sql_query = sql.SQL(
"""
SELECT
text,
metadata,
score
FROM
(SELECT
v2.doc_id doc_id,
SUM(v1.embedding * v2.embedding) /
(SQRT(SUM(v1.embedding * v1.embedding)) *
SQRT(SUM(v2.embedding * v2.embedding))) AS score
FROM
{v1} v1
INNER JOIN
{v2} v2
ON v1.embedding_id = v2.embedding_id
GROUP BY v2.doc_id
ORDER BY score DESC LIMIT %s
) v4
INNER JOIN
{v3} v3
ON v4.doc_id = v3.doc_id
ORDER BY score DESC
"""
).format(
v1=v1,
v2=v2,
v3=v3,
)
cursor.execute(sql_query, (k,))
results = cursor.fetchall()
documents: List[Tuple[Document, float]] = []
for result in results:
metadata = json.loads(result[1]) or {}
doc = Document(page_content=result[0], metadata=metadata)
documents.append((doc, result[2]))
return documents
[docs] def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Perform a similarity search with Yellowbrick
Args:
query (str): query string
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
NOTE: Please do not let end-user fill this and always be aware
of SQL injection.
Returns:
List[Document]: List of Documents
"""
embedding = self._embedding.embed_query(query)
documents = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, **kwargs
)
return [doc for doc, _ in documents]
[docs] def similarity_search_with_score(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Perform a similarity search with Yellowbrick
Args:
query (str): query string
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
NOTE: Please do not let end-user fill this and always be aware
of SQL injection.
Returns:
List[Document]: List of (Document, similarity)
"""
embedding = self._embedding.embed_query(query)
documents = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, **kwargs
)
return documents
[docs] def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Perform a similarity search with Yellowbrick by vectors
Args:
embedding (List[float]): query embedding
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
NOTE: Please do not let end-user fill this and always be aware
of SQL injection.
Returns:
List[Document]: List of documents
"""
documents = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, **kwargs
)
return [doc for doc, _ in documents]
def _update_lsh_hashes(
self,
cursor: "PgCursor",
doc_id: Optional[uuid.UUID] = None,
) -> None:
"""Add hashes to LSH index"""
from psycopg2 import sql
schema_prefix = (self._schema,) if self._schema else ()
lsh_hyperplane_table = sql.Identifier(
*schema_prefix, self._table + self.LSH_HYPERPLANE_TABLE
)
lsh_index_table_id = sql.Identifier(
*schema_prefix, self._table + self.LSH_INDEX_TABLE
)
embedding_table_id = sql.Identifier(*schema_prefix, self._table)
query_prefix_id = sql.SQL("INSERT INTO {}").format(lsh_index_table_id)
condition = (
sql.SQL("WHERE e.doc_id = {doc_id}").format(doc_id=sql.Literal(str(doc_id)))
if doc_id
else sql.SQL("")
)
group_by = sql.SQL("GROUP BY 1, 2")
input_query = sql.SQL(
"""
{query_prefix}
SELECT
e.doc_id as doc_id,
h.id as hash_index,
CASE WHEN SUM(e.embedding * h.hyperplane) > 0 THEN 1 ELSE 0 END as hash
FROM {embedding_table} e
INNER JOIN {hyperplanes} h ON e.embedding_id = h.hyperplane_id
{condition}
{group_by}
"""
).format(
query_prefix=query_prefix_id,
embedding_table=embedding_table_id,
hyperplanes=lsh_hyperplane_table,
condition=condition,
group_by=group_by,
)
cursor.execute(input_query)
def _generate_tmp_lsh_hashes(
self, cursor: "PgCursor", tmp_embedding_table: str, tmp_hash_table: str
) -> None:
"""Generate temp LSH"""
from psycopg2 import sql
schema_prefix = (self._schema,) if self._schema else ()
lsh_hyperplane_table = sql.Identifier(
*schema_prefix, self._table + self.LSH_HYPERPLANE_TABLE
)
tmp_embedding_table_id = sql.Identifier(tmp_embedding_table)
tmp_hash_table_id = sql.Identifier(tmp_hash_table)
query_prefix = sql.SQL("CREATE TEMPORARY TABLE {} ON COMMIT DROP AS").format(
tmp_hash_table_id
)
group_by = sql.SQL("GROUP BY 1")
input_query = sql.SQL(
"""
{query_prefix}
SELECT
h.id as hash_index,
CASE WHEN SUM(e.embedding * h.hyperplane) > 0 THEN 1 ELSE 0 END as hash
FROM {embedding_table} e
INNER JOIN {hyperplanes} h ON e.embedding_id = h.hyperplane_id
{group_by}
DISTRIBUTE REPLICATE
"""
).format(
query_prefix=query_prefix,
embedding_table=tmp_embedding_table_id,
hyperplanes=lsh_hyperplane_table,
group_by=group_by,
)
cursor.execute(input_query)
def _populate_hyperplanes(self, cursor: "PgCursor", num_hyperplanes: int) -> None:
"""Generate random hyperplanes and store in Yellowbrick"""
from psycopg2 import sql
schema_prefix = (self._schema,) if self._schema else ()
hyperplanes_table = sql.Identifier(
*schema_prefix, self._table + self.LSH_HYPERPLANE_TABLE
)
cursor.execute(sql.SQL("SELECT COUNT(*) FROM {t}").format(t=hyperplanes_table))
if cursor.fetchone()[0] > 0:
return
t = sql.Identifier(*schema_prefix, self._table)
cursor.execute(sql.SQL("SELECT MAX(embedding_id) FROM {t}").format(t=t))
num_dimensions = cursor.fetchone()[0]
num_dimensions += 1
insert_query = sql.SQL(
"""
WITH parameters AS (
SELECT {num_hyperplanes} AS num_hyperplanes,
{dims_per_hyperplane} AS dims_per_hyperplane
)
INSERT INTO {hyperplanes_table} (id, hyperplane_id, hyperplane)
SELECT id, hyperplane_id, (random() * 2 - 1) AS hyperplane
FROM
(SELECT range-1 id FROM sys.rowgenerator
WHERE range BETWEEN 1 AND
(SELECT num_hyperplanes FROM parameters) AND
worker_lid = 0 AND thread_id = 0) a,
(SELECT range-1 hyperplane_id FROM sys.rowgenerator
WHERE range BETWEEN 1 AND
(SELECT dims_per_hyperplane FROM parameters) AND
worker_lid = 0 AND thread_id = 0) b
"""
).format(
num_hyperplanes=sql.Literal(num_hyperplanes),
dims_per_hyperplane=sql.Literal(num_dimensions),
hyperplanes_table=hyperplanes_table,
)
cursor.execute(insert_query)
def _create_lsh_index_tables(self, cursor: "PgCursor") -> None:
"""Create LSH index and hyperplane tables"""
from psycopg2 import sql
schema_prefix = (self._schema,) if self._schema else ()
t1 = sql.Identifier(*schema_prefix, self._table + self.LSH_INDEX_TABLE)
t2 = sql.Identifier(*schema_prefix, self._table + self.CONTENT_TABLE)
c1 = sql.Identifier(self._table + self.LSH_INDEX_TABLE + "_pk_doc_id")
c2 = sql.Identifier(self._table + self.LSH_INDEX_TABLE + "_fk_doc_id")
cursor.execute(
sql.SQL(
"""
CREATE TABLE IF NOT EXISTS {t1} (
doc_id UUID NOT NULL,
hash_index SMALLINT NOT NULL,
hash SMALLINT NOT NULL,
CONSTRAINT {c1} PRIMARY KEY (doc_id, hash_index),
CONSTRAINT {c2} FOREIGN KEY (doc_id) REFERENCES {t2}(doc_id))
DISTRIBUTE ON (doc_id) SORT ON (doc_id)
"""
).format(
t1=t1,
t2=t2,
c1=c1,
c2=c2,
)
)
schema_prefix = (self._schema,) if self._schema else ()
t = sql.Identifier(*schema_prefix, self._table + self.LSH_HYPERPLANE_TABLE)
c = sql.Identifier(self._table + self.LSH_HYPERPLANE_TABLE + "_pk_id_hp_id")
cursor.execute(
sql.SQL(
"""
CREATE TABLE IF NOT EXISTS {t} (
id SMALLINT NOT NULL,
hyperplane_id SMALLINT NOT NULL,
hyperplane FLOAT NOT NULL,
CONSTRAINT {c} PRIMARY KEY (id, hyperplane_id))
DISTRIBUTE REPLICATE SORT ON (id)
"""
).format(
t=t,
c=c,
)
)
def _drop_lsh_index_tables(self, cursor: "PgCursor") -> None:
"""Drop LSH index tables"""
self.drop(
schema=self._schema, table=self._table + self.LSH_INDEX_TABLE, cursor=cursor
)
self.drop(
schema=self._schema,
table=self._table + self.LSH_HYPERPLANE_TABLE,
cursor=cursor,
)
[docs] def create_index(self, index_params: Yellowbrick.IndexParams) -> None:
"""Create index from existing vectors"""
if index_params.index_type == Yellowbrick.IndexType.LSH:
with self.connection.get_cursor() as cursor:
self._drop_lsh_index_tables(cursor)
self._create_lsh_index_tables(cursor)
self._populate_hyperplanes(
cursor, index_params.get_param("num_hyperplanes", 128)
)
self._update_lsh_hashes(cursor)
[docs] def drop_index(self, index_params: Yellowbrick.IndexParams) -> None:
"""Drop an index"""
if index_params.index_type == Yellowbrick.IndexType.LSH:
with self.connection.get_cursor() as cursor:
self._drop_lsh_index_tables(cursor)
def _update_index(
self, index_params: Yellowbrick.IndexParams, doc_id: uuid.UUID
) -> None:
"""Update an index with a new or modified embedding in the embeddings table"""
if index_params.index_type == Yellowbrick.IndexType.LSH:
with self.connection.get_cursor() as cursor:
self._update_lsh_hashes(cursor, doc_id)
[docs] def migrate_schema_v1_to_v2(self) -> None:
from psycopg2 import sql
try:
with self.connection.get_cursor() as cursor:
schema_prefix = (self._schema,) if self._schema else ()
embeddings = sql.Identifier(*schema_prefix, self._table)
old_embeddings = sql.Identifier(*schema_prefix, self._table + "_v1")
content = sql.Identifier(
*schema_prefix, self._table + self.CONTENT_TABLE
)
alter_table_query = sql.SQL("ALTER TABLE {t1} RENAME TO {t2}").format(
t1=embeddings,
t2=old_embeddings,
)
cursor.execute(alter_table_query)
self._create_table(cursor)
insert_query = sql.SQL(
"""
INSERT INTO {t1} (doc_id, embedding_id, embedding)
SELECT id, embedding_id, embedding FROM {t2}
"""
).format(
t1=embeddings,
t2=old_embeddings,
)
cursor.execute(insert_query)
insert_content_query = sql.SQL(
"""
INSERT INTO {t1} (doc_id, text, metadata)
SELECT DISTINCT id, text, metadata FROM {t2}
"""
).format(t1=content, t2=old_embeddings)
cursor.execute(insert_content_query)
except Exception as e:
raise RuntimeError(f"Failed to migrate schema: {e}") from e